"\\begin{bmatrix}\n 1& 1& 1 \\\\\n 1& -1& 0 \\\\\n 1& 0& -1 \\\\\n\\end{bmatrix};" "\\begin{bmatrix}\n 4& 0& 0 \\\\\n 0& 1& 0 \\\\\n 0& 0& 1 \\\\\n\\end{bmatrix};"
"\\begin{bmatrix}\n 1& 1& 1 \\\\\n 1& -1& 0 \\\\\n 1& 0& -1 \\\\\n\\end{bmatrix} \\times T=\n\\begin{bmatrix}\n 4& 0& 0 \\\\\n 0& 1& 0 \\\\\n 0& 0& 1 \\\\\n\\end{bmatrix};"
"T=\\begin{bmatrix}\n 1& 1& 1 \\\\\n 1& -1& 0 \\\\\n 1& 0& -1 \\\\\n\\end{bmatrix} ^{-1}\n\\begin{bmatrix}\n 4& 0& 0 \\\\\n 0& 1& 0 \\\\\n 0& 0& 1 \\\\\n\\end{bmatrix};"
Consider the matrix "\\begin{bmatrix}\n 1& 1& 1 \\\\\n 1& -1& 0 \\\\\n 1& 0& -1 \\\\\n\\end{bmatrix}" is A. We use Linear Row Reduction to find the Inverse Matrix of A:
"A^{-1}=\\begin{bmatrix}\n 1& \\ \\ \\ 1&1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 1&0&0 \\\\\n 1& -1& 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 0&1&0 \\\\\n 1&\\ \\ \\ 0& -1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 0&0&1 \\\\\n\\end{bmatrix} ^{-1}" = "\\begin{Bmatrix}\n r_1=\\frac{r_1+r_2+r_3}{3} \\\\\n r_2=\\frac{r_1+r_3-2\\times r_2}{3} \\\\\n r_3=\\frac{r_1+r_2-2\\times r_3}{3}\n\\end{Bmatrix}" =
"A^{-1}=\\begin{bmatrix}\n1&0&0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\frac{1}{3} & \\frac{1}{3} & \\frac{1}{3} \\\\\n0&1&0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\frac{1}{3} & -\\frac{2}{3} & \\frac{1}{3} \\\\\n0&0&1\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\frac{1}{3} & \\frac{1}{3} & -\\frac{2}{3} \\\\\n\\end{bmatrix} ;"
"T=\\begin{bmatrix}\n \\frac{1}{3} & \\frac{1}{3} & \\frac{1}{3} \\\\\n \\frac{1}{3} & -\\frac{2}{3} & \\frac{1}{3} \\\\\n \\frac{1}{3} & \\frac{1}{3} & -\\frac{2}{3} \\\\\n\\end{bmatrix} \n\\begin{bmatrix}\n 4& 0& 0 \\\\\n 0& 1& 0 \\\\\n 0& 0& 1 \\\\\n\\end{bmatrix};"
"T=\\begin{bmatrix}\n \\frac{4}{3} & \\frac{1}{3} & \\frac{1}{3} \\\\\n \\frac{4}{3} & -\\frac{2}{3} & \\frac{1}{3} \\\\\n \\frac{4}{3} & \\frac{1}{3} & -\\frac{2}{3} \\\\\n\\end{bmatrix} ;" .
Comments
Leave a comment