We have three points. So, we shall use second degree polynomial fitting.
"p(x)=ax^2+bx+c"
For "(2,4)" ,
"4=a(2^2)+b(2)+c\\\\\n4=4a+2b+c......................(1)"
For "(3,6),"
"6=a(3^2)+b(3)+c\\\\\n6=9a+3b+c......................(2)"
For "(5,10),"
"10=a(5^2)+b(5)+c\\\\\n10=25a+5b+c...................(3)"
Bring the three equations together.
"4a+2b+c=4\\\\\n9a+3b+c=6\\\\\n25a+5b+c=10"
"\\begin{pmatrix}\n 4 & 2 &1\\\\\n 9 &3 &1\\\\\n25 &5 &1\\\\\n\\end{pmatrix}\\begin{pmatrix}a\\\\b\\\\c\\\\\\end{pmatrix}=\\begin{pmatrix}4\\\\6\\\\10\\\\\\end{pmatrix}"
Using Cramer's rule.
"\\Delta=\\begin{vmatrix}\n 4 & 2 &1\\\\\n 9 &3 &1\\\\\n25 &5 &1\\\\\n\\end{vmatrix}=-6"
"\\Delta_x=\\begin{vmatrix}\n 4 & 2 &1\\\\\n 6 &3 &1\\\\\n10 &5 &1\\\\\n\\end{vmatrix}=0\\\\\na=\\frac{\\Delta_x}{\\Delta}=\\frac{0}{-6}=0"
"\\Delta_y=\\begin{vmatrix}\n 4 & 4 &1\\\\\n 9 &6 &1\\\\\n25 &10 &1\\\\\n\\end{vmatrix}=-12\\\\\nb=\\frac{\\Delta_y}{\\Delta}=\\frac{-12}{-6}=2"
"\\Delta_z=\\begin{vmatrix}\n 4 & 2 &4\\\\\n 9 &3 &6\\\\\n25 &5 &10\\\\\n\\end{vmatrix}=0\\\\\nc=\\frac{\\Delta_z}{\\Delta}=\\frac{0}{-6}=0"
So,
"p(x)=0.x^2+2.x+0\\\\\np(x)=2x"
Here is the graph of "p(x)=2x"
Comments
Leave a comment