Answer to Question #150819 in Linear Algebra for shanto

Question #150819
Determine the polynomial function whose graph passes through the points (2, 4), (3,6) and (5,10). Also sketch the graph of the polynomial function. (Using Cramer’s Method).
1
Expert's answer
2020-12-21T18:07:09-0500

We have three points. So, we shall use second degree polynomial fitting.


p(x)=ax2+bx+cp(x)=ax^2+bx+c

For (2,4)(2,4) ,

4=a(22)+b(2)+c4=4a+2b+c......................(1)4=a(2^2)+b(2)+c\\ 4=4a+2b+c......................(1)

For (3,6),(3,6),

6=a(32)+b(3)+c6=9a+3b+c......................(2)6=a(3^2)+b(3)+c\\ 6=9a+3b+c......................(2)

For (5,10),(5,10),

10=a(52)+b(5)+c10=25a+5b+c...................(3)10=a(5^2)+b(5)+c\\ 10=25a+5b+c...................(3)

Bring the three equations together.

4a+2b+c=49a+3b+c=625a+5b+c=104a+2b+c=4\\ 9a+3b+c=6\\ 25a+5b+c=10

(4219312551)(abc)=(4610)\begin{pmatrix} 4 & 2 &1\\ 9 &3 &1\\ 25 &5 &1\\ \end{pmatrix}\begin{pmatrix}a\\b\\c\\\end{pmatrix}=\begin{pmatrix}4\\6\\10\\\end{pmatrix}

Using Cramer's rule.


Δ=4219312551=6\Delta=\begin{vmatrix} 4 & 2 &1\\ 9 &3 &1\\ 25 &5 &1\\ \end{vmatrix}=-6


Δx=4216311051=0a=ΔxΔ=06=0\Delta_x=\begin{vmatrix} 4 & 2 &1\\ 6 &3 &1\\ 10 &5 &1\\ \end{vmatrix}=0\\ a=\frac{\Delta_x}{\Delta}=\frac{0}{-6}=0


Δy=44196125101=12b=ΔyΔ=126=2\Delta_y=\begin{vmatrix} 4 & 4 &1\\ 9 &6 &1\\ 25 &10 &1\\ \end{vmatrix}=-12\\ b=\frac{\Delta_y}{\Delta}=\frac{-12}{-6}=2


Δz=42493625510=0c=ΔzΔ=06=0\Delta_z=\begin{vmatrix} 4 & 2 &4\\ 9 &3 &6\\ 25 &5 &10\\ \end{vmatrix}=0\\ c=\frac{\Delta_z}{\Delta}=\frac{0}{-6}=0


So,

p(x)=0.x2+2.x+0p(x)=2xp(x)=0.x^2+2.x+0\\ p(x)=2x


Here is the graph of p(x)=2xp(x)=2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment