We have three points. So, we shall use second degree polynomial fitting.
p ( x ) = a x 2 + b x + c p(x)=ax^2+bx+c p ( x ) = a x 2 + b x + c
For ( 2 , 4 ) (2,4) ( 2 , 4 ) ,
4 = a ( 2 2 ) + b ( 2 ) + c 4 = 4 a + 2 b + c . . . . . . . . . . . . . . . . . . . . . . ( 1 ) 4=a(2^2)+b(2)+c\\
4=4a+2b+c......................(1) 4 = a ( 2 2 ) + b ( 2 ) + c 4 = 4 a + 2 b + c ...................... ( 1 )
For ( 3 , 6 ) , (3,6), ( 3 , 6 ) ,
6 = a ( 3 2 ) + b ( 3 ) + c 6 = 9 a + 3 b + c . . . . . . . . . . . . . . . . . . . . . . ( 2 ) 6=a(3^2)+b(3)+c\\
6=9a+3b+c......................(2) 6 = a ( 3 2 ) + b ( 3 ) + c 6 = 9 a + 3 b + c ...................... ( 2 )
For ( 5 , 10 ) , (5,10), ( 5 , 10 ) ,
10 = a ( 5 2 ) + b ( 5 ) + c 10 = 25 a + 5 b + c . . . . . . . . . . . . . . . . . . . ( 3 ) 10=a(5^2)+b(5)+c\\
10=25a+5b+c...................(3) 10 = a ( 5 2 ) + b ( 5 ) + c 10 = 25 a + 5 b + c ................... ( 3 )
Bring the three equations together.
4 a + 2 b + c = 4 9 a + 3 b + c = 6 25 a + 5 b + c = 10 4a+2b+c=4\\
9a+3b+c=6\\
25a+5b+c=10 4 a + 2 b + c = 4 9 a + 3 b + c = 6 25 a + 5 b + c = 10
( 4 2 1 9 3 1 25 5 1 ) ( a b c ) = ( 4 6 10 ) \begin{pmatrix}
4 & 2 &1\\
9 &3 &1\\
25 &5 &1\\
\end{pmatrix}\begin{pmatrix}a\\b\\c\\\end{pmatrix}=\begin{pmatrix}4\\6\\10\\\end{pmatrix} ⎝ ⎛ 4 9 25 2 3 5 1 1 1 ⎠ ⎞ ⎝ ⎛ a b c ⎠ ⎞ = ⎝ ⎛ 4 6 10 ⎠ ⎞
Using Cramer's rule.
Δ = ∣ 4 2 1 9 3 1 25 5 1 ∣ = − 6 \Delta=\begin{vmatrix}
4 & 2 &1\\
9 &3 &1\\
25 &5 &1\\
\end{vmatrix}=-6 Δ = ∣ ∣ 4 9 25 2 3 5 1 1 1 ∣ ∣ = − 6
Δ x = ∣ 4 2 1 6 3 1 10 5 1 ∣ = 0 a = Δ x Δ = 0 − 6 = 0 \Delta_x=\begin{vmatrix}
4 & 2 &1\\
6 &3 &1\\
10 &5 &1\\
\end{vmatrix}=0\\
a=\frac{\Delta_x}{\Delta}=\frac{0}{-6}=0 Δ x = ∣ ∣ 4 6 10 2 3 5 1 1 1 ∣ ∣ = 0 a = Δ Δ x = − 6 0 = 0
Δ y = ∣ 4 4 1 9 6 1 25 10 1 ∣ = − 12 b = Δ y Δ = − 12 − 6 = 2 \Delta_y=\begin{vmatrix}
4 & 4 &1\\
9 &6 &1\\
25 &10 &1\\
\end{vmatrix}=-12\\
b=\frac{\Delta_y}{\Delta}=\frac{-12}{-6}=2 Δ y = ∣ ∣ 4 9 25 4 6 10 1 1 1 ∣ ∣ = − 12 b = Δ Δ y = − 6 − 12 = 2
Δ z = ∣ 4 2 4 9 3 6 25 5 10 ∣ = 0 c = Δ z Δ = 0 − 6 = 0 \Delta_z=\begin{vmatrix}
4 & 2 &4\\
9 &3 &6\\
25 &5 &10\\
\end{vmatrix}=0\\
c=\frac{\Delta_z}{\Delta}=\frac{0}{-6}=0 Δ z = ∣ ∣ 4 9 25 2 3 5 4 6 10 ∣ ∣ = 0 c = Δ Δ z = − 6 0 = 0
So,
p ( x ) = 0. x 2 + 2. x + 0 p ( x ) = 2 x p(x)=0.x^2+2.x+0\\
p(x)=2x p ( x ) = 0. x 2 + 2. x + 0 p ( x ) = 2 x
Here is the graph of p ( x ) = 2 x p(x)=2x p ( x ) = 2 x
Comments
Leave a comment