T(a,b)=(a+b,a−2b,3a+b)
Let T(a,b)=0 then (a+b,a-2b,3a+b)=0
⇒a=0,b=0
Therefore (a,b)=(0,0).
Hence T is nonsingular.
Therefore T−1 exists from R3 to R2.
Now let, (a+b,a−2b,3a+b)=(x,y,z)
⇒ a+b=x
a-2b=y
3a+b=z
Now equating these equations one can get a=72z+y,b=7z−3y
Therefore the inverse of T is T−1:R3→R2T−1(x,y,z)=(72z+y,7z−3y)
Comments