Given matrices are
"A = \\begin{bmatrix}\n 1 & -3 & 2 \\\\\n 4 & 1 & -1 \\\\\n 3 & 2 & 5 \n\\end{bmatrix}" and "B = \\begin{bmatrix}\n 2 & 1 & 5 \\\\\n -1 & -2 & -2 \\\\\n 3 & 1 & 2\n\\end{bmatrix}"
Now, "AB = \\begin{bmatrix}\n 1 & -3 & 2 \\\\\n 4 & 1 & -1 \\\\\n 3 & 2 & 5\n\\end{bmatrix} \\begin{bmatrix}\n 2 & 1 & 5 \\\\\n -1 & -2 & -2 \\\\\n 3 & 1 & 2\n\\end{bmatrix} = \\begin{bmatrix}\n 11 & 9 & 15 \\\\\n 4 & 1 & 16 \\\\\n 19 & 4 & 21\n\\end{bmatrix}"
Determinant of the matrix AB is 1471.
Co-factors are:
"a_{11} = (21-64) = -43"
"a_{12}=-(84-304)=220"
"a_{13}= (16-19) = -3"
"a_{21}=-(189-60)=-129"
"a_{22}=(231-285)=-54"
"a_{23}=-(44-171)=127"
"a_{31}=(144-15)=129"
"a_{32}=-(176-60)=-116"
"a_{33}=(11-36)=-25"
"adj (AB) = \\begin{bmatrix}\n -43 & -129 & 129 \\\\\n 220 & -54 & -116 \\\\\n -3 & 127 & -25\n\\end{bmatrix}"
"adj (AB) ="
Then inverse of the matrix AB is,
"(AB)^{-1} = \\frac{1}{1471}\\begin{bmatrix}\n -43 & -129 & 129 \\\\\n 220 & -54 & -116 \\\\\n -3 & 127 & -25\n\\end{bmatrix}"
Comments
Leave a comment