3x1 + 2x2 -x3= -15
5x1+ 3x2 + 2x3 =0
3x1+ x2 +3x3=11
11x1+7x2 = -30
"\\begin {bmatrix}\n 3 & 2 & -1 \\ \\ \\ \\ \\ \\ -15 \\\\\n 5 & 3 & 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 0\\\\\n 3 & 1 & 3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 11 \\\\\n 11 & 7 & 0 \\ \\ \\ \\ \\ \\ \\ -30\n\\end{bmatrix}\n=" "\\begin {Vmatrix}\nR_2 =5R_1-3R_2 \\\\\nR_3 = R_1-R_3 \\\\\nR_4 = 5R_4-4R_2\n\\end{Vmatrix} \n=" "\\begin {bmatrix}\n 3 & 2 & -1 \\ \\ \\ \\ \\ \\ -15 \\\\\n 0 & 1 & -1 \\ \\ \\ \\ \\ \\ \\ -75\\\\\n 0 & 1 & -2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 26 \\\\\n 0 & 2 & -22 \\ \\ \\ \\ \\ \\ \\ -150\n\\end{bmatrix}="
"\\begin {Vmatrix}\nR_1 =R_1-2R_2 \\\\\nR_2 =R_2-R_3 \\\\\nR_3 = 2R_3-R_4 \\\\\nR_4 = 2R_2- R_4\n\\end{Vmatrix} \n=" "\\begin {bmatrix}\n 3 & 0 & 11 \\ \\ \\ \\ \\ \\ -135 \\\\\n 0 & 1 & -1 \\ \\ \\ \\ \\ \\ \\ -75\\\\\n 0 & 0 & 18 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 202 \\\\\n 0 & 0 & 20 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 0\n\\end{bmatrix}=" "\\begin {Vmatrix}\nR_1 =\\frac{R_1}{3} \\\\\nR_2 =R_2-R_3 \\\\\nR_3 = \\frac{R_3}{18} \\\\\nR_4 = 10R_3-9R_4\n\\end{Vmatrix} \n="
"\\begin {bmatrix}\n 1 & 0 & \\frac{11}{3} \\ \\ \\ \\ \\ \\ -\\frac{135}{3} \\\\\n 0 & 1 & -1 \\ \\ \\ \\ \\ \\ -75\\\\\n 0 & 0 & 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\frac{101}{9} \\\\\n 0 & 0 & 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ 2020\n\\end{bmatrix};"
In "R_4" "0 \\ne 2020" . So this system has no solution.
Comments
Leave a comment