3x1 + 2x2 -x3= -15
5x1+ 3x2 + 2x3 =0
3x1+ x2 +3x3=11
11x1+7x2 = -30
[ 3 2 − 1 − 15 5 3 2 0 3 1 3 11 11 7 0 − 30 ] = \begin {bmatrix}
3 & 2 & -1 \ \ \ \ \ \ -15 \\
5 & 3 & 2 \ \ \ \ \ \ \ \ \ \ \ \ \ 0\\
3 & 1 & 3 \ \ \ \ \ \ \ \ \ \ \ \ 11 \\
11 & 7 & 0 \ \ \ \ \ \ \ -30
\end{bmatrix}
= ⎣ ⎡ 3 5 3 11 2 3 1 7 − 1 − 15 2 0 3 11 0 − 30 ⎦ ⎤ = ∥ R 2 = 5 R 1 − 3 R 2 R 3 = R 1 − R 3 R 4 = 5 R 4 − 4 R 2 ∥ = \begin {Vmatrix}
R_2 =5R_1-3R_2 \\
R_3 = R_1-R_3 \\
R_4 = 5R_4-4R_2
\end{Vmatrix}
= ∥ ∥ R 2 = 5 R 1 − 3 R 2 R 3 = R 1 − R 3 R 4 = 5 R 4 − 4 R 2 ∥ ∥ = [ 3 2 − 1 − 15 0 1 − 1 − 75 0 1 − 2 26 0 2 − 22 − 150 ] = \begin {bmatrix}
3 & 2 & -1 \ \ \ \ \ \ -15 \\
0 & 1 & -1 \ \ \ \ \ \ \ -75\\
0 & 1 & -2 \ \ \ \ \ \ \ \ \ \ \ 26 \\
0 & 2 & -22 \ \ \ \ \ \ \ -150
\end{bmatrix}= ⎣ ⎡ 3 0 0 0 2 1 1 2 − 1 − 15 − 1 − 75 − 2 26 − 22 − 150 ⎦ ⎤ =
∥ R 1 = R 1 − 2 R 2 R 2 = R 2 − R 3 R 3 = 2 R 3 − R 4 R 4 = 2 R 2 − R 4 ∥ = \begin {Vmatrix}
R_1 =R_1-2R_2 \\
R_2 =R_2-R_3 \\
R_3 = 2R_3-R_4 \\
R_4 = 2R_2- R_4
\end{Vmatrix}
= ∥ ∥ R 1 = R 1 − 2 R 2 R 2 = R 2 − R 3 R 3 = 2 R 3 − R 4 R 4 = 2 R 2 − R 4 ∥ ∥ = [ 3 0 11 − 135 0 1 − 1 − 75 0 0 18 202 0 0 20 0 ] = \begin {bmatrix}
3 & 0 & 11 \ \ \ \ \ \ -135 \\
0 & 1 & -1 \ \ \ \ \ \ \ -75\\
0 & 0 & 18 \ \ \ \ \ \ \ \ \ \ \ 202 \\
0 & 0 & 20 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0
\end{bmatrix}= ⎣ ⎡ 3 0 0 0 0 1 0 0 11 − 135 − 1 − 75 18 202 20 0 ⎦ ⎤ = ∥ R 1 = R 1 3 R 2 = R 2 − R 3 R 3 = R 3 18 R 4 = 10 R 3 − 9 R 4 ∥ = \begin {Vmatrix}
R_1 =\frac{R_1}{3} \\
R_2 =R_2-R_3 \\
R_3 = \frac{R_3}{18} \\
R_4 = 10R_3-9R_4
\end{Vmatrix}
= ∥ ∥ R 1 = 3 R 1 R 2 = R 2 − R 3 R 3 = 18 R 3 R 4 = 10 R 3 − 9 R 4 ∥ ∥ =
[ 1 0 11 3 − 135 3 0 1 − 1 − 75 0 0 1 101 9 0 0 0 2020 ] ; \begin {bmatrix}
1 & 0 & \frac{11}{3} \ \ \ \ \ \ -\frac{135}{3} \\
0 & 1 & -1 \ \ \ \ \ \ -75\\
0 & 0 & 1 \ \ \ \ \ \ \ \ \ \ \frac{101}{9} \\
0 & 0 & 0 \ \ \ \ \ \ \ \ \ 2020
\end{bmatrix}; ⎣ ⎡ 1 0 0 0 0 1 0 0 3 11 − 3 135 − 1 − 75 1 9 101 0 2020 ⎦ ⎤ ;
In R 4 R_4 R 4 0 ≠ 2020 0 \ne 2020 0 = 2020 . So this system has no solution.
Comments