Question #150835
Find the characteristic equation of the matrix

A= [ 1 2 3
4 1 -1
-3 2 5 ]
and verify Cayley-Hamilton theorem for it.
1
Expert's answer
2020-12-21T17:01:25-0500

The characteristic equation of the given matrix AA is det(AλI)=0det(A-\lambda I)=0, where λ\lambda is any scalar.

1λ2341λ1325λ =0\Rightarrow \left | \begin{matrix} 1-\lambda & 2 & 3 \\ 4 & 1-\lambda & -1 \\ -3 & 2 & 5-\lambda \end{matrix} \ \right |=0

(1λ)[(1λ)(5λ)+2]2[4(5λ)3]+3[8+3(1λ)]=0\Rightarrow (1-\lambda )\left [ (1-\lambda )(5-\lambda )+2 \right ]-2\left [ 4(5-\lambda )-3 \right ]+3\left [ 8+3(1-\lambda ) \right ]=0

(1λ)(λ26λ+7)2(174λ)+3(113λ)=0\Rightarrow (1-\lambda )(\lambda ^{2}-6\lambda +7)-2(17-4\lambda )+3(11-3\lambda )=0

λ3+7λ214λ+6=0\Rightarrow -\lambda ^{3}+7\lambda ^{2}-14\lambda +6=0

Therefore, the characteristic of the given matrix is given by

λ37λ2+14λ6=0\lambda ^{3}-7\lambda ^{2}+14\lambda -6=0

Now let us verify the Cayley- Hamilton theorem.

The matrix equation is given by

A37A2+14A6I=OA ^{3}-7A ^{2}+14A -6I=O

A2=[123411325 ][123411325 ]=[01016117610614 ]A^2=\left [ \begin{matrix} 1 & 2 & 3 \\ 4 & 1 & -1 \\ -3 & 2 & 5 \end{matrix} \ \right ]\left [ \begin{matrix} 1 & 2 & 3 \\ 4 & 1 & -1 \\ -3 & 2 & 5 \end{matrix} \ \right ]=\left [ \begin{matrix} 0 & 10 & 16 \\ 11 & 7 & 6 \\ -10 & 6 & 14 \end{matrix} \ \right ]

And

A3=[01016117610614 ][123411325 ]=[84270214156281434 ]A^3=\left [ \begin{matrix} 0 & 10 & 16 \\ 11 & 7 & 6 \\ -10 & 6 & 14 \end{matrix} \ \right ]\left [ \begin{matrix} 1 & 2 & 3 \\ 4 & 1 & -1 \\ -3 & 2 & 5 \end{matrix} \ \right ]=\left [ \begin{matrix} -8 & 42 & 70 \\ 21 & 41 & 56 \\ -28 & 14 & 34 \end{matrix} \ \right ]

Now

A37A2+14A6IA ^{3}-7A ^{2}+14A -6I

[84270214156281434 ][070112774942704298 ]\left [ \begin{matrix} -8 & 42 & 70 \\ 21 & 41 & 56 \\ -28 & 14 & 34 \end{matrix} \ \right ]-\left [ \begin{matrix} 0 & 70 & 112 \\ 77 & 49 & 42 \\ -70 & 42 & 98 \end{matrix} \ \right ]

+[142842561414422870 ][600060006 ]+\left [ \begin{matrix} 14 & 28 & 42 \\ 56 & 14 & -14 \\ -42 & 28 & 70 \end{matrix} \ \right ]-\left [ \begin{matrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{matrix} \ \right ]


=[000000000 ]=\left [ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix} \ \right ]

=O=O

Therefore, A37A2+14A6I=OA ^{3}-7A ^{2}+14A -6I=O

Hence, Cayley-Hamilton Theorem is verified.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS