The characteristic equation of the given matrix A A A is d e t ( A − λ I ) = 0 det(A-\lambda I)=0 d e t ( A − λ I ) = 0 , where λ \lambda λ is any scalar.
⇒ ∣ 1 − λ 2 3 4 1 − λ − 1 − 3 2 5 − λ ∣ = 0 \Rightarrow \left |
\begin{matrix}
1-\lambda & 2 & 3 \\
4 & 1-\lambda & -1 \\
-3 & 2 & 5-\lambda
\end{matrix}
\ \right |=0 ⇒ ∣ ∣ 1 − λ 4 − 3 2 1 − λ 2 3 − 1 5 − λ ∣ ∣ = 0
⇒ ( 1 − λ ) [ ( 1 − λ ) ( 5 − λ ) + 2 ] − 2 [ 4 ( 5 − λ ) − 3 ] + 3 [ 8 + 3 ( 1 − λ ) ] = 0 \Rightarrow (1-\lambda )\left [ (1-\lambda )(5-\lambda )+2 \right ]-2\left [ 4(5-\lambda )-3 \right ]+3\left [ 8+3(1-\lambda ) \right ]=0 ⇒ ( 1 − λ ) [ ( 1 − λ ) ( 5 − λ ) + 2 ] − 2 [ 4 ( 5 − λ ) − 3 ] + 3 [ 8 + 3 ( 1 − λ ) ] = 0
⇒ ( 1 − λ ) ( λ 2 − 6 λ + 7 ) − 2 ( 17 − 4 λ ) + 3 ( 11 − 3 λ ) = 0 \Rightarrow (1-\lambda )(\lambda ^{2}-6\lambda +7)-2(17-4\lambda )+3(11-3\lambda )=0 ⇒ ( 1 − λ ) ( λ 2 − 6 λ + 7 ) − 2 ( 17 − 4 λ ) + 3 ( 11 − 3 λ ) = 0
⇒ − λ 3 + 7 λ 2 − 14 λ + 6 = 0 \Rightarrow -\lambda ^{3}+7\lambda ^{2}-14\lambda +6=0 ⇒ − λ 3 + 7 λ 2 − 14 λ + 6 = 0
Therefore, the characteristic of the given matrix is given by
λ 3 − 7 λ 2 + 14 λ − 6 = 0 \lambda ^{3}-7\lambda ^{2}+14\lambda -6=0 λ 3 − 7 λ 2 + 14 λ − 6 = 0
Now let us verify the Cayley- Hamilton theorem.
The matrix equation is given by
A 3 − 7 A 2 + 14 A − 6 I = O A ^{3}-7A ^{2}+14A -6I=O A 3 − 7 A 2 + 14 A − 6 I = O
A 2 = [ 1 2 3 4 1 − 1 − 3 2 5 ] [ 1 2 3 4 1 − 1 − 3 2 5 ] = [ 0 10 16 11 7 6 − 10 6 14 ] A^2=\left [
\begin{matrix}
1 & 2 & 3 \\
4 & 1 & -1 \\
-3 & 2 & 5
\end{matrix}
\ \right ]\left [
\begin{matrix}
1 & 2 & 3 \\
4 & 1 & -1 \\
-3 & 2 & 5
\end{matrix}
\ \right ]=\left [
\begin{matrix}
0 & 10 & 16 \\
11 & 7 & 6 \\
-10 & 6 & 14
\end{matrix}
\ \right ] A 2 = ⎣ ⎡ 1 4 − 3 2 1 2 3 − 1 5 ⎦ ⎤ ⎣ ⎡ 1 4 − 3 2 1 2 3 − 1 5 ⎦ ⎤ = ⎣ ⎡ 0 11 − 10 10 7 6 16 6 14 ⎦ ⎤
And
A 3 = [ 0 10 16 11 7 6 − 10 6 14 ] [ 1 2 3 4 1 − 1 − 3 2 5 ] = [ − 8 42 70 21 41 56 − 28 14 34 ] A^3=\left [
\begin{matrix}
0 & 10 & 16 \\
11 & 7 & 6 \\
-10 & 6 & 14
\end{matrix}
\ \right ]\left [
\begin{matrix}
1 & 2 & 3 \\
4 & 1 & -1 \\
-3 & 2 & 5
\end{matrix}
\ \right ]=\left [
\begin{matrix}
-8 & 42 & 70 \\
21 & 41 & 56 \\
-28 & 14 & 34
\end{matrix}
\ \right ] A 3 = ⎣ ⎡ 0 11 − 10 10 7 6 16 6 14 ⎦ ⎤ ⎣ ⎡ 1 4 − 3 2 1 2 3 − 1 5 ⎦ ⎤ = ⎣ ⎡ − 8 21 − 28 42 41 14 70 56 34 ⎦ ⎤
Now
A 3 − 7 A 2 + 14 A − 6 I A ^{3}-7A ^{2}+14A -6I A 3 − 7 A 2 + 14 A − 6 I
[ − 8 42 70 21 41 56 − 28 14 34 ] − [ 0 70 112 77 49 42 − 70 42 98 ] \left [
\begin{matrix}
-8 & 42 & 70 \\
21 & 41 & 56 \\
-28 & 14 & 34
\end{matrix}
\ \right ]-\left [
\begin{matrix}
0 & 70 & 112 \\
77 & 49 & 42 \\
-70 & 42 & 98
\end{matrix}
\ \right ] ⎣ ⎡ − 8 21 − 28 42 41 14 70 56 34 ⎦ ⎤ − ⎣ ⎡ 0 77 − 70 70 49 42 112 42 98 ⎦ ⎤
+ [ 14 28 42 56 14 − 14 − 42 28 70 ] − [ 6 0 0 0 6 0 0 0 6 ] +\left [
\begin{matrix}
14 & 28 & 42 \\
56 & 14 & -14 \\
-42 & 28 & 70
\end{matrix}
\ \right ]-\left [
\begin{matrix}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{matrix}
\ \right ] + ⎣ ⎡ 14 56 − 42 28 14 28 42 − 14 70 ⎦ ⎤ − ⎣ ⎡ 6 0 0 0 6 0 0 0 6 ⎦ ⎤
= [ 0 0 0 0 0 0 0 0 0 ] =\left [
\begin{matrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{matrix}
\ \right ] = ⎣ ⎡ 0 0 0 0 0 0 0 0 0 ⎦ ⎤
= O =O = O
Therefore, A 3 − 7 A 2 + 14 A − 6 I = O A ^{3}-7A ^{2}+14A -6I=O A 3 − 7 A 2 + 14 A − 6 I = O
Hence, Cayley-Hamilton Theorem is verified.
Comments