The characteristic equation of the given matrix "A" is "det(A-\\lambda I)=0", where "\\lambda" is any scalar.
"\\Rightarrow \\left | \n \\begin{matrix}\n 1-\\lambda & 2 & 3 \\\\\n 4 & 1-\\lambda & -1 \\\\\n -3 & 2 & 5-\\lambda \n \\end{matrix}\n\\ \\right |=0"
"\\Rightarrow (1-\\lambda )\\left [ (1-\\lambda )(5-\\lambda )+2 \\right ]-2\\left [ 4(5-\\lambda )-3 \\right ]+3\\left [ 8+3(1-\\lambda ) \\right ]=0"
"\\Rightarrow (1-\\lambda )(\\lambda ^{2}-6\\lambda +7)-2(17-4\\lambda )+3(11-3\\lambda )=0"
"\\Rightarrow -\\lambda ^{3}+7\\lambda ^{2}-14\\lambda +6=0"
Therefore, the characteristic of the given matrix is given by
"\\lambda ^{3}-7\\lambda ^{2}+14\\lambda -6=0"
Now let us verify the Cayley- Hamilton theorem.
The matrix equation is given by
"A ^{3}-7A ^{2}+14A -6I=O"
"A^2=\\left [ \n \\begin{matrix}\n 1 & 2 & 3 \\\\\n 4 & 1 & -1 \\\\\n -3 & 2 & 5\n \\end{matrix}\n\\ \\right ]\\left [ \n \\begin{matrix}\n 1 & 2 & 3 \\\\\n 4 & 1 & -1 \\\\\n -3 & 2 & 5\n \\end{matrix}\n\\ \\right ]=\\left [ \n \\begin{matrix}\n 0 & 10 & 16 \\\\\n 11 & 7 & 6 \\\\\n -10 & 6 & 14\n \\end{matrix}\n\\ \\right ]"
And
"A^3=\\left [ \n \\begin{matrix}\n 0 & 10 & 16 \\\\\n 11 & 7 & 6 \\\\\n -10 & 6 & 14\n \\end{matrix}\n\\ \\right ]\\left [ \n \\begin{matrix}\n 1 & 2 & 3 \\\\\n 4 & 1 & -1 \\\\\n -3 & 2 & 5\n \\end{matrix}\n\\ \\right ]=\\left [ \n \\begin{matrix}\n -8 & 42 & 70 \\\\\n 21 & 41 & 56 \\\\\n -28 & 14 & 34\n \\end{matrix}\n\\ \\right ]"
Now
"A ^{3}-7A ^{2}+14A -6I"
"\\left [ \n \\begin{matrix}\n -8 & 42 & 70 \\\\\n 21 & 41 & 56 \\\\\n -28 & 14 & 34\n \\end{matrix}\n\\ \\right ]-\\left [ \n \\begin{matrix}\n 0 & 70 & 112 \\\\\n 77 & 49 & 42 \\\\\n -70 & 42 & 98\n \\end{matrix}\n\\ \\right ]"
"+\\left [ \n \\begin{matrix}\n 14 & 28 & 42 \\\\\n 56 & 14 & -14 \\\\\n -42 & 28 & 70\n \\end{matrix}\n\\ \\right ]-\\left [ \n \\begin{matrix}\n 6 & 0 & 0 \\\\\n 0 & 6 & 0 \\\\\n 0 & 0 & 6\n \\end{matrix}\n\\ \\right ]"
"=\\left [ \n \\begin{matrix}\n 0 & 0 & 0 \\\\\n 0 & 0 & 0 \\\\\n 0 & 0 & 0\n \\end{matrix}\n\\ \\right ]"
"=O"
Therefore, "A ^{3}-7A ^{2}+14A -6I=O"
Hence, Cayley-Hamilton Theorem is verified.
Comments
Leave a comment