The characteristic equation of the given matrix A is det(A−λI)=0, where λ is any scalar.
⇒∣∣1−λ4−321−λ23−15−λ ∣∣=0
⇒(1−λ)[(1−λ)(5−λ)+2]−2[4(5−λ)−3]+3[8+3(1−λ)]=0
⇒(1−λ)(λ2−6λ+7)−2(17−4λ)+3(11−3λ)=0
⇒−λ3+7λ2−14λ+6=0
Therefore, the characteristic of the given matrix is given by
λ3−7λ2+14λ−6=0
Now let us verify the Cayley- Hamilton theorem.
The matrix equation is given by
A3−7A2+14A−6I=O
A2=⎣⎡14−32123−15 ⎦⎤⎣⎡14−32123−15 ⎦⎤=⎣⎡011−10107616614 ⎦⎤
And
A3=⎣⎡011−10107616614 ⎦⎤⎣⎡14−32123−15 ⎦⎤=⎣⎡−821−28424114705634 ⎦⎤
Now
A3−7A2+14A−6I
⎣⎡−821−28424114705634 ⎦⎤−⎣⎡077−707049421124298 ⎦⎤
+⎣⎡1456−4228142842−1470 ⎦⎤−⎣⎡600060006 ⎦⎤
=⎣⎡000000000 ⎦⎤
=O
Therefore, A3−7A2+14A−6I=O
Hence, Cayley-Hamilton Theorem is verified.
Comments