Answer to Question #114659 in Linear Algebra for Struggling Student

Question #114659
Let z = cosθ + isinθ.
Then z^n = cos(nθ) + isin(nθ) for all n ∈ N(by de Moivre) and z^−n = cos(nθ)−isin(nθ).

(a) Show that 2cos(nθ) = z^n + z^−n and 2isin(nθ) = z^n −z^−n

(b) Show that 2^ncos^n θ = (z + 1/z)^n and (2i)^n sin^n θ = (z− 1 z/n)

(c) Use (b) to express sin^7 θ in terms of multiple angles

(d) Express cos^3 θsin^4 θ in terms of multiple angles

(e) Eliminate θ from the equations 4x = cos(3θ) + 3cosθ; 4y = 3sinθ−sin(3θ).
1
Expert's answer
2020-05-13T18:41:08-0400

Solutiona)zn+zn=cos(nθ)+isin(nθ)+cos(nθ)isin(nθ)=2cos(nθ)znzn=cos(nθ)+isin(nθ)cos(nθ)+isin(nθ)=2isin(nθ)b)From a) follow that when n=1z1+z1=2cos(θ)(z1+z1)n=(2cos(θ))n=2ncosn(θ)z1z1=2isin(θ)(z1z1)n=(2isin(θ))n=(2i)nsinn(θ)c)From b) we have that(2isinθ)7=(zz1)7=C07z7((z1))0+C17z6((z1))1+C27z5((z1))2+C37z4((z1))3+C47z3((z1))4+C57z2((z1))5+C67z1((z1))6+C77z0((z1))7==1z77z6z1+21z5z235z4z3+35z3z421z2z5+7z1z61z0z7==z77z5+21z335z+35z121z3+7z5z7==(z7z7)7(z5z5)+21(z3z3)35(zz1)==2isin7θ72isin5θ+212isin3θ352isinθ==2i(sin7θ7sin5θ+21sin3θ35sinθ)(2i)7(sinθ)7=(2isinθ)7sin7θ=sin7θ7sin5θ+21sin3θ35sinθ64d)23cos3θ=(z1+z1)3=1z3+3z2z1+3z1z2+1z0z3==z3+3z+3z1+z3==(z3+z3)+3(z1+z1)==2cos3θ+32cosθ==2cos3θ+6cosθcos3θ=14cos3θ+34cosθ(2i)3sin4θ=(z1z1)4=1z4+4z3(z1)1+6z2(z1)2+4z1(z1)3+1(z1)4==z44z2+64z2+z4==(z4+z4)4(z2+z2)+6==2cos4θ42cos2θ+6sin4θ=18cos4θ12cos2θ+38cos3θsin4θ=(14cos(3θ)+34cos(θ))(18cos(4θ)12cos(2θ)+38)=cos(θ)+cos(7θ)64cos(θ)+cos(5θ)16+332cos(3θ)+3(cos(3θ)+cos(5θ))643(cos(θ)+cos(3θ))16+932cos(θ)=3cos(θ)3cos(3θ)cos(5θ)+cos(7θ)e)From a) we have that4x=cos3θ+3cosθ4y=3sinθsin3θcos3θ=z3+z32=(z1+z1)(z2zz1+z2))2==2cosθ(2cos2θ1))2=cosθ(4cos2θ3)==4cos3θ3cosθ4x=4cos3θx=cos3θcosθ=x3θ=arccos(x3)sin3θ=z3z32=(z1z1)(z2+zz1+z2)2i==2isinθ(2cos2θ+1)2i=sinθ(34sin2θ)=3sinθ4sin3θ4y=4sin3θy=sin3θsinθ=y3θ=arcsin(y3)\bold{Solution} \\ \bold {a)}\\ z^{n} + z^{-n} = cos(nθ)+ i sin(nθ) + cos(nθ) - i sin(nθ) = 2cos(nθ) \\ z^{n} - z^{-n} = cos(nθ)+ i sin(nθ) - cos(nθ) + i sin(nθ) =2isin(nθ) \\ \bold{b)} \\ From \ a)\ follow \ that \ when \ n=1 \\ z^{1} + z^{−1}= 2cos(θ)\\ ( z^1 + z^{−1})^n =(2cos(θ) )^n = 2^n cos^n(θ)\\ z^1 - z^{−1}= 2i sin(θ)\\ ( z^1 - z^{−1})^n =(2i sin(θ) )^n = (2i)^n sin^n(θ) \\ \bold{c) }\\ From \ b) \ we\ have \ that\\ (2i sinθ)^7 = (z-z^{-1})^7 = C_{0 }^7 z^7 (-(z^{-1}))^0 + C_{1}^7 z^6 (-(z^{-1}))^1 + C_{2}^7 z^5 (-(z^{-1}))^2+C_{3}^7 z^4 (-(z^{-1}))^3+ C_{4}^7 z^3 (-(z^{-1}))^4 + C_{5}^7 z^2 (-(z^{-1}))^5 +C_{6}^7 z^1 (-(z^{-1}))^6 +C_{7}^7 z^0 (-(z^{-1}))^7 =\\ = 1z^7 - 7z^6 z^{-1} + 21z^5 z^{-2} - 35z^4 z^{-3} +35z^3 z^{-4} - 21z^2 z^{-5} + 7z^1 z^{-6}-1z^0 z^{-7} =\\ = z^7 – 7 z^5+ 21 z^3 – 35z + 35 z^{-1} – 21z^{-3} + 7z^{-5} - z^{-7}=\\ = ( z^7 - z^{-7}) – 7( z^5 - z^{-5}) +21( z^3-z^{-3} ) – 35(z - z^{-1} ) =\\ =2isin⁡7θ – 7*2isin⁡5θ + 21* 2isin⁡3θ – 35*2isin⁡θ =\\ = 2i (sin⁡7θ – 7sin⁡5θ + 21sin⁡3θ – 35sin⁡θ)\\ (2i)^7 (sinθ)^7 =(2i sinθ)^7\\ sin^7 θ=\frac{sin⁡7θ – 7 sin⁡5θ + 21 sin⁡3θ – 35 sin⁡θ}{-64}\\ \bold{d)}\\ 2^3 cos^3 θ = (z^1+ z^{-1})^3 = 1z^3 + 3z^2 z^{-1} + 3 z^1 z^{-2} + 1z^0 z^{-3} =\\ = z^3+3z+3z^{-1}+ z^{-3} =\\ = (z^3+ z^{-3} ) +3(z^1+ z^{-1}) =\\ = 2cos⁡3θ + 3 *2cos⁡θ =\\ = 2cos⁡3θ + 6cos⁡θ\\ cos^3 θ = \frac{1}{4} cos⁡3θ + \frac{3}{4} cos⁡θ\\ (2i)^3 sin^4 θ = (z^1-z^{-1})^4 = 1z^4 + 4z^3 (-z^{-1})^1 + 6 z^2 (-z^{-1})^2 + 4 z^1 (-z^{-1})^3 + 1 (-z^{-1})^4 =\\ = z^4-4z^2 +6 – 4 z^{-2} + z^{-4} =\\ = (z^4+ z^{-4})-4(z^2+ z^{-2})+ 6 =\\ = 2cos⁡4θ – 4*2cos2⁡θ+6\\ sin^4 θ= \frac{1}{8} cos⁡4θ- \frac{1}{2} cos2⁡θ+\frac{3}{8}\\ cos^3 θ sin^4 θ= (\frac{1}{4} cos⁡(3θ) + \frac{3}{4} cos⁡(θ))(\frac{1}{8} cos⁡(4θ)- \frac{1}{2} cos(2⁡θ)+\frac{3}{8}) =\frac{cos(-\theta)+cos(7\theta)}{64} - \frac{cos(\theta)+cos(5\theta)}{16} + \frac{3}{32}cos(3\theta) + \frac{3(cos(-3\theta)+cos(5\theta))}{64} - \frac{3(cos(-\theta)+cos(3\theta))}{16} +\frac{9}{32}cos(\theta)=3cos(\theta)-3cos(3\theta)-cos(5\theta)+cos(7\theta)\\ \bold{e)}\\ From \ a)\ we\ have\ that\\ 4x = cos⁡3θ + 3 cos⁡θ\\ 4y = 3sin⁡θ - sin⁡3θ\\ cos⁡3θ = \frac{z^3+ z^{-3}}{2} = \frac{(z^1+ z^{-1})(z^2-z z^{-1}+ z^{-2}))}{2} = \\ =\frac{2 cos⁡θ (2 cos2⁡θ-1))}{2} = cos⁡θ(4cos^2 θ – 3) =\\ = 4cos^3 θ – 3cos⁡θ\\ 4x = 4cos^3 θ\\ x = cos^3 θ\\ cos⁡θ=\sqrt[3]{x}\\ \theta=arccos(\sqrt[3]{x})\\ sin⁡3θ = \frac{z^3- z^{-3}}{2} = \frac{(z^1- z^{-1})(z^2+z z^{-1}+ z^{-2})}{2i} = \\ =\frac{2i sin⁡θ (2 cos2⁡θ+1)}{2i}= sin⁡θ(3 - 4sin^2 θ ) = 3sin⁡θ - 4sin^3 θ\\ 4y = 4sin^3 θ\\ y = sin^3 θ\\ sin⁡θ=\sqrt[3]{y}\\ \theta=arcsin(\sqrt[3]{y})\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment