Solutiona)zn+z−n=cos(nθ)+isin(nθ)+cos(nθ)−isin(nθ)=2cos(nθ)zn−z−n=cos(nθ)+isin(nθ)−cos(nθ)+isin(nθ)=2isin(nθ)b)From a) follow that when n=1z1+z−1=2cos(θ)(z1+z−1)n=(2cos(θ))n=2ncosn(θ)z1−z−1=2isin(θ)(z1−z−1)n=(2isin(θ))n=(2i)nsinn(θ)c)From b) we have that(2isinθ)7=(z−z−1)7=C07z7(−(z−1))0+C17z6(−(z−1))1+C27z5(−(z−1))2+C37z4(−(z−1))3+C47z3(−(z−1))4+C57z2(−(z−1))5+C67z1(−(z−1))6+C77z0(−(z−1))7==1z7−7z6z−1+21z5z−2−35z4z−3+35z3z−4−21z2z−5+7z1z−6−1z0z−7==z7–7z5+21z3–35z+35z−1–21z−3+7z−5−z−7==(z7−z−7)–7(z5−z−5)+21(z3−z−3)–35(z−z−1)==2isin7θ–7∗2isin5θ+21∗2isin3θ–35∗2isinθ==2i(sin7θ–7sin5θ+21sin3θ–35sinθ)(2i)7(sinθ)7=(2isinθ)7sin7θ=−64sin7θ–7sin5θ+21sin3θ–35sinθd)23cos3θ=(z1+z−1)3=1z3+3z2z−1+3z1z−2+1z0z−3==z3+3z+3z−1+z−3==(z3+z−3)+3(z1+z−1)==2cos3θ+3∗2cosθ==2cos3θ+6cosθcos3θ=41cos3θ+43cosθ(2i)3sin4θ=(z1−z−1)4=1z4+4z3(−z−1)1+6z2(−z−1)2+4z1(−z−1)3+1(−z−1)4==z4−4z2+6–4z−2+z−4==(z4+z−4)−4(z2+z−2)+6==2cos4θ–4∗2cos2θ+6sin4θ=81cos4θ−21cos2θ+83cos3θsin4θ=(41cos(3θ)+43cos(θ))(81cos(4θ)−21cos(2θ)+83)=64cos(−θ)+cos(7θ)−16cos(θ)+cos(5θ)+323cos(3θ)+643(cos(−3θ)+cos(5θ))−163(cos(−θ)+cos(3θ))+329cos(θ)=3cos(θ)−3cos(3θ)−cos(5θ)+cos(7θ)e)From a) we have that4x=cos3θ+3cosθ4y=3sinθ−sin3θcos3θ=2z3+z−3=2(z1+z−1)(z2−zz−1+z−2))==22cosθ(2cos2θ−1))=cosθ(4cos2θ–3)==4cos3θ–3cosθ4x=4cos3θx=cos3θcosθ=3xθ=arccos(3x)sin3θ=2z3−z−3=2i(z1−z−1)(z2+zz−1+z−2)==2i2isinθ(2cos2θ+1)=sinθ(3−4sin2θ)=3sinθ−4sin3θ4y=4sin3θy=sin3θsinθ=3yθ=arcsin(3y)
Comments
Leave a comment