S o l u t i o n a ) z n + z − n = c o s ( n θ ) + i s i n ( n θ ) + c o s ( n θ ) − i s i n ( n θ ) = 2 c o s ( n θ ) z n − z − n = c o s ( n θ ) + i s i n ( n θ ) − c o s ( n θ ) + i s i n ( n θ ) = 2 i s i n ( n θ ) b ) F r o m a ) f o l l o w t h a t w h e n n = 1 z 1 + z − 1 = 2 c o s ( θ ) ( z 1 + z − 1 ) n = ( 2 c o s ( θ ) ) n = 2 n c o s n ( θ ) z 1 − z − 1 = 2 i s i n ( θ ) ( z 1 − z − 1 ) n = ( 2 i s i n ( θ ) ) n = ( 2 i ) n s i n n ( θ ) c ) F r o m b ) w e h a v e t h a t ( 2 i s i n θ ) 7 = ( z − z − 1 ) 7 = C 0 7 z 7 ( − ( z − 1 ) ) 0 + C 1 7 z 6 ( − ( z − 1 ) ) 1 + C 2 7 z 5 ( − ( z − 1 ) ) 2 + C 3 7 z 4 ( − ( z − 1 ) ) 3 + C 4 7 z 3 ( − ( z − 1 ) ) 4 + C 5 7 z 2 ( − ( z − 1 ) ) 5 + C 6 7 z 1 ( − ( z − 1 ) ) 6 + C 7 7 z 0 ( − ( z − 1 ) ) 7 = = 1 z 7 − 7 z 6 z − 1 + 21 z 5 z − 2 − 35 z 4 z − 3 + 35 z 3 z − 4 − 21 z 2 z − 5 + 7 z 1 z − 6 − 1 z 0 z − 7 = = z 7 – 7 z 5 + 21 z 3 – 35 z + 35 z − 1 – 21 z − 3 + 7 z − 5 − z − 7 = = ( z 7 − z − 7 ) – 7 ( z 5 − z − 5 ) + 21 ( z 3 − z − 3 ) – 35 ( z − z − 1 ) = = 2 i s i n 7 θ – 7 ∗ 2 i s i n 5 θ + 21 ∗ 2 i s i n 3 θ – 35 ∗ 2 i s i n θ = = 2 i ( s i n 7 θ – 7 s i n 5 θ + 21 s i n 3 θ – 35 s i n θ ) ( 2 i ) 7 ( s i n θ ) 7 = ( 2 i s i n θ ) 7 s i n 7 θ = s i n 7 θ – 7 s i n 5 θ + 21 s i n 3 θ – 35 s i n θ − 64 d ) 2 3 c o s 3 θ = ( z 1 + z − 1 ) 3 = 1 z 3 + 3 z 2 z − 1 + 3 z 1 z − 2 + 1 z 0 z − 3 = = z 3 + 3 z + 3 z − 1 + z − 3 = = ( z 3 + z − 3 ) + 3 ( z 1 + z − 1 ) = = 2 c o s 3 θ + 3 ∗ 2 c o s θ = = 2 c o s 3 θ + 6 c o s θ c o s 3 θ = 1 4 c o s 3 θ + 3 4 c o s θ ( 2 i ) 3 s i n 4 θ = ( z 1 − z − 1 ) 4 = 1 z 4 + 4 z 3 ( − z − 1 ) 1 + 6 z 2 ( − z − 1 ) 2 + 4 z 1 ( − z − 1 ) 3 + 1 ( − z − 1 ) 4 = = z 4 − 4 z 2 + 6 – 4 z − 2 + z − 4 = = ( z 4 + z − 4 ) − 4 ( z 2 + z − 2 ) + 6 = = 2 c o s 4 θ – 4 ∗ 2 c o s 2 θ + 6 s i n 4 θ = 1 8 c o s 4 θ − 1 2 c o s 2 θ + 3 8 c o s 3 θ s i n 4 θ = ( 1 4 c o s ( 3 θ ) + 3 4 c o s ( θ ) ) ( 1 8 c o s ( 4 θ ) − 1 2 c o s ( 2 θ ) + 3 8 ) = c o s ( − θ ) + c o s ( 7 θ ) 64 − c o s ( θ ) + c o s ( 5 θ ) 16 + 3 32 c o s ( 3 θ ) + 3 ( c o s ( − 3 θ ) + c o s ( 5 θ ) ) 64 − 3 ( c o s ( − θ ) + c o s ( 3 θ ) ) 16 + 9 32 c o s ( θ ) = 3 c o s ( θ ) − 3 c o s ( 3 θ ) − c o s ( 5 θ ) + c o s ( 7 θ ) e ) F r o m a ) w e h a v e t h a t 4 x = c o s 3 θ + 3 c o s θ 4 y = 3 s i n θ − s i n 3 θ c o s 3 θ = z 3 + z − 3 2 = ( z 1 + z − 1 ) ( z 2 − z z − 1 + z − 2 ) ) 2 = = 2 c o s θ ( 2 c o s 2 θ − 1 ) ) 2 = c o s θ ( 4 c o s 2 θ – 3 ) = = 4 c o s 3 θ – 3 c o s θ 4 x = 4 c o s 3 θ x = c o s 3 θ c o s θ = x 3 θ = a r c c o s ( x 3 ) s i n 3 θ = z 3 − z − 3 2 = ( z 1 − z − 1 ) ( z 2 + z z − 1 + z − 2 ) 2 i = = 2 i s i n θ ( 2 c o s 2 θ + 1 ) 2 i = s i n θ ( 3 − 4 s i n 2 θ ) = 3 s i n θ − 4 s i n 3 θ 4 y = 4 s i n 3 θ y = s i n 3 θ s i n θ = y 3 θ = a r c s i n ( y 3 ) \bold{Solution} \\
\bold {a)}\\
z^{n} + z^{-n} = cos(nθ)+ i sin(nθ) + cos(nθ) - i sin(nθ) = 2cos(nθ) \\
z^{n} - z^{-n} = cos(nθ)+ i sin(nθ) - cos(nθ) + i sin(nθ) =2isin(nθ)
\\
\bold{b)} \\
From \ a)\ follow \ that \ when \ n=1 \\
z^{1} + z^{−1}= 2cos(θ)\\
( z^1 + z^{−1})^n =(2cos(θ) )^n = 2^n cos^n(θ)\\
z^1 - z^{−1}= 2i sin(θ)\\
( z^1 - z^{−1})^n =(2i sin(θ) )^n = (2i)^n sin^n(θ) \\
\bold{c) }\\
From \ b) \ we\ have \ that\\
(2i sinθ)^7 = (z-z^{-1})^7 =
C_{0 }^7 z^7 (-(z^{-1}))^0 + C_{1}^7 z^6 (-(z^{-1}))^1 + C_{2}^7 z^5 (-(z^{-1}))^2+C_{3}^7 z^4 (-(z^{-1}))^3+ C_{4}^7 z^3 (-(z^{-1}))^4 + C_{5}^7 z^2 (-(z^{-1}))^5 +C_{6}^7 z^1 (-(z^{-1}))^6 +C_{7}^7 z^0 (-(z^{-1}))^7 =\\
= 1z^7 - 7z^6 z^{-1} + 21z^5 z^{-2} - 35z^4 z^{-3} +35z^3 z^{-4} - 21z^2 z^{-5} + 7z^1 z^{-6}-1z^0 z^{-7} =\\
= z^7 – 7 z^5+ 21 z^3 – 35z + 35 z^{-1} – 21z^{-3} + 7z^{-5} - z^{-7}=\\
= ( z^7 - z^{-7}) – 7( z^5 - z^{-5}) +21( z^3-z^{-3} ) – 35(z - z^{-1} ) =\\
=2isin7θ – 7*2isin5θ + 21* 2isin3θ – 35*2isinθ =\\
= 2i (sin7θ – 7sin5θ + 21sin3θ – 35sinθ)\\
(2i)^7 (sinθ)^7 =(2i sinθ)^7\\
sin^7 θ=\frac{sin7θ – 7 sin5θ + 21 sin3θ – 35 sinθ}{-64}\\
\bold{d)}\\
2^3 cos^3 θ = (z^1+ z^{-1})^3 = 1z^3 + 3z^2 z^{-1} + 3 z^1 z^{-2} + 1z^0 z^{-3} =\\
= z^3+3z+3z^{-1}+ z^{-3} =\\
= (z^3+ z^{-3} ) +3(z^1+ z^{-1}) =\\
= 2cos3θ + 3 *2cosθ =\\
= 2cos3θ + 6cosθ\\
cos^3 θ = \frac{1}{4} cos3θ + \frac{3}{4} cosθ\\
(2i)^3 sin^4 θ = (z^1-z^{-1})^4 = 1z^4 + 4z^3 (-z^{-1})^1 + 6 z^2 (-z^{-1})^2 + 4 z^1 (-z^{-1})^3 + 1 (-z^{-1})^4 =\\
= z^4-4z^2 +6 – 4 z^{-2} + z^{-4} =\\
= (z^4+ z^{-4})-4(z^2+ z^{-2})+ 6 =\\
= 2cos4θ – 4*2cos2θ+6\\
sin^4 θ= \frac{1}{8} cos4θ- \frac{1}{2} cos2θ+\frac{3}{8}\\
cos^3 θ sin^4 θ= (\frac{1}{4} cos(3θ) + \frac{3}{4} cos(θ))(\frac{1}{8} cos(4θ)- \frac{1}{2} cos(2θ)+\frac{3}{8}) =\frac{cos(-\theta)+cos(7\theta)}{64} - \frac{cos(\theta)+cos(5\theta)}{16} + \frac{3}{32}cos(3\theta) + \frac{3(cos(-3\theta)+cos(5\theta))}{64} - \frac{3(cos(-\theta)+cos(3\theta))}{16} +\frac{9}{32}cos(\theta)=3cos(\theta)-3cos(3\theta)-cos(5\theta)+cos(7\theta)\\
\bold{e)}\\
From \ a)\ we\ have\ that\\
4x = cos3θ + 3 cosθ\\
4y = 3sinθ - sin3θ\\
cos3θ = \frac{z^3+ z^{-3}}{2} = \frac{(z^1+ z^{-1})(z^2-z z^{-1}+ z^{-2}))}{2} = \\
=\frac{2 cosθ (2 cos2θ-1))}{2} = cosθ(4cos^2 θ – 3) =\\
= 4cos^3 θ – 3cosθ\\
4x = 4cos^3 θ\\
x = cos^3 θ\\
cosθ=\sqrt[3]{x}\\
\theta=arccos(\sqrt[3]{x})\\
sin3θ = \frac{z^3- z^{-3}}{2} = \frac{(z^1- z^{-1})(z^2+z z^{-1}+ z^{-2})}{2i} = \\
=\frac{2i sinθ (2 cos2θ+1)}{2i}= sinθ(3 - 4sin^2 θ ) = 3sinθ - 4sin^3 θ\\
4y = 4sin^3 θ\\
y = sin^3 θ\\
sinθ=\sqrt[3]{y}\\
\theta=arcsin(\sqrt[3]{y})\\ Solution a ) z n + z − n = cos ( n θ ) + i s in ( n θ ) + cos ( n θ ) − i s in ( n θ ) = 2 cos ( n θ ) z n − z − n = cos ( n θ ) + i s in ( n θ ) − cos ( n θ ) + i s in ( n θ ) = 2 i s in ( n θ ) b ) F ro m a ) f o ll o w t ha t w h e n n = 1 z 1 + z − 1 = 2 cos ( θ ) ( z 1 + z − 1 ) n = ( 2 cos ( θ ) ) n = 2 n co s n ( θ ) z 1 − z − 1 = 2 i s in ( θ ) ( z 1 − z − 1 ) n = ( 2 i s in ( θ ) ) n = ( 2 i ) n s i n n ( θ ) c ) F ro m b ) w e ha v e t ha t ( 2 i s in θ ) 7 = ( z − z − 1 ) 7 = C 0 7 z 7 ( − ( z − 1 ) ) 0 + C 1 7 z 6 ( − ( z − 1 ) ) 1 + C 2 7 z 5 ( − ( z − 1 ) ) 2 + C 3 7 z 4 ( − ( z − 1 ) ) 3 + C 4 7 z 3 ( − ( z − 1 ) ) 4 + C 5 7 z 2 ( − ( z − 1 ) ) 5 + C 6 7 z 1 ( − ( z − 1 ) ) 6 + C 7 7 z 0 ( − ( z − 1 ) ) 7 = = 1 z 7 − 7 z 6 z − 1 + 21 z 5 z − 2 − 35 z 4 z − 3 + 35 z 3 z − 4 − 21 z 2 z − 5 + 7 z 1 z − 6 − 1 z 0 z − 7 = = z 7 –7 z 5 + 21 z 3 –35 z + 35 z − 1 –21 z − 3 + 7 z − 5 − z − 7 = = ( z 7 − z − 7 ) –7 ( z 5 − z − 5 ) + 21 ( z 3 − z − 3 ) –35 ( z − z − 1 ) = = 2 i s in 7 θ –7 ∗ 2 i s in 5 θ + 21 ∗ 2 i s in 3 θ –35 ∗ 2 i s in θ = = 2 i ( s in 7 θ –7 s in 5 θ + 21 s in 3 θ –35 s in θ ) ( 2 i ) 7 ( s in θ ) 7 = ( 2 i s in θ ) 7 s i n 7 θ = − 64 s in 7 θ –7 s in 5 θ + 21 s in 3 θ –35 s in θ d ) 2 3 co s 3 θ = ( z 1 + z − 1 ) 3 = 1 z 3 + 3 z 2 z − 1 + 3 z 1 z − 2 + 1 z 0 z − 3 = = z 3 + 3 z + 3 z − 1 + z − 3 = = ( z 3 + z − 3 ) + 3 ( z 1 + z − 1 ) = = 2 cos 3 θ + 3 ∗ 2 cos θ = = 2 cos 3 θ + 6 cos θ co s 3 θ = 4 1 cos 3 θ + 4 3 cos θ ( 2 i ) 3 s i n 4 θ = ( z 1 − z − 1 ) 4 = 1 z 4 + 4 z 3 ( − z − 1 ) 1 + 6 z 2 ( − z − 1 ) 2 + 4 z 1 ( − z − 1 ) 3 + 1 ( − z − 1 ) 4 = = z 4 − 4 z 2 + 6–4 z − 2 + z − 4 = = ( z 4 + z − 4 ) − 4 ( z 2 + z − 2 ) + 6 = = 2 cos 4 θ –4 ∗ 2 cos 2 θ + 6 s i n 4 θ = 8 1 cos 4 θ − 2 1 cos 2 θ + 8 3 co s 3 θ s i n 4 θ = ( 4 1 cos ( 3 θ ) + 4 3 cos ( θ )) ( 8 1 cos ( 4 θ ) − 2 1 cos ( 2 θ ) + 8 3 ) = 64 cos ( − θ ) + cos ( 7 θ ) − 16 cos ( θ ) + cos ( 5 θ ) + 32 3 cos ( 3 θ ) + 64 3 ( cos ( − 3 θ ) + cos ( 5 θ )) − 16 3 ( cos ( − θ ) + cos ( 3 θ )) + 32 9 cos ( θ ) = 3 cos ( θ ) − 3 cos ( 3 θ ) − cos ( 5 θ ) + cos ( 7 θ ) e ) F ro m a ) w e ha v e t ha t 4 x = cos 3 θ + 3 cos θ 4 y = 3 s in θ − s in 3 θ cos 3 θ = 2 z 3 + z − 3 = 2 ( z 1 + z − 1 ) ( z 2 − z z − 1 + z − 2 )) = = 2 2 cos θ ( 2 cos 2 θ − 1 )) = cos θ ( 4 co s 2 θ –3 ) = = 4 co s 3 θ –3 cos θ 4 x = 4 co s 3 θ x = co s 3 θ cos θ = 3 x θ = a rccos ( 3 x ) s in 3 θ = 2 z 3 − z − 3 = 2 i ( z 1 − z − 1 ) ( z 2 + z z − 1 + z − 2 ) = = 2 i 2 i s in θ ( 2 cos 2 θ + 1 ) = s in θ ( 3 − 4 s i n 2 θ ) = 3 s in θ − 4 s i n 3 θ 4 y = 4 s i n 3 θ y = s i n 3 θ s in θ = 3 y θ = a rcs in ( 3 y )
Comments