Show that if det (A) ≠ 0 where det(A) is the determinant of the coefficient matrix
Let
"a_{11} x_{1} + a_{12} x_{2} + a_{13}x_{3} = b_{1}\\\\\n\na_{21} x_{1} + a_{22} x_{2} + a_{23}x_{3} = b_{2}\\\\\n\na_{31} x_{1} + a_{32} x_{2} + a_{33}x_{3} = b_{3}\\\\"
coefficient matrix of A is given by:
"A=\\begin{bmatrix}\n a_{11}&a_{12}&a_{13} \\\\\n a_{21} & a_{22}&a_{23}\\\\\na_{31}&a_{32}&a_{33}\n\\end{bmatrix}"
"det(A)"
"det(A)= a_{11}\\begin{vmatrix}\n a_{22}& a_{23} \\\\\n a_{32}& a_{33}\n\\end{vmatrix}-a_{12}\\begin{vmatrix}\n a_{21}& a_{23} \\\\\n a_{31} & a_{33}\n\\end{vmatrix}+a_{13}\\begin{vmatrix}\n a_{21}& a_{22} \\\\\n a_{31} & a_{32}\n\\end{vmatrix}"
"det(A)=a_{11}(a_{22}a_{33}-a_{32}a_{23})-a_{12}(a_{21}a_{33}-a_{31}a_{23})+a_{13}(a_{21}a_{32}-a_{31}a_{22})"
"det(A)=a_{11}a_{22}a_{33}-a_{11}a_{32}a_{23}-a_{12}a_{21}a_{33}+a_{12}a_{31}a_{23}+a_{13}a_{21}a_{32}-a_{13}a_{31}a_{22}"
hence
det(A) is not equal to zero
solving by the property of determinant:
"x_{2}det(A)=\\begin{vmatrix}\n a_{11}&x_{2}a_{12}&a_{13} \\\\\n a_{21} & x_{2}a_{22}&a_{23}\\\\\na_{31}&x_{2}a_{32}&a_{33}\n\\end{vmatrix}"
applying the operation
"c_{2}=c_{2}+x_{1}c_{1}+x_{3}c_{3}\\\\x_{2}det(A)=\\begin{vmatrix}\n a_{11}&a_{11} x_{1} + a_{12} x_{2} + a_{13}x_{3}&a_{13} \\\\\n a_{21} & a_{21} x_{1} + a_{22} x_{2} + a_{23}x_{3}&a_{23}\\\\\na_{31}&a_{31} x_{1} + a_{32} x_{2} + a_{33}x_{3}&a_{33}\n\\end{vmatrix}\\\\"
"\\implies\\\\x_{2}det(A)=\\begin{vmatrix}\n a_{11}&b_{1}&a_{13} \\\\\n a_{21} & b_{2}&a_{23}\\\\\na_{31}&b_{3}&a_{33}\n\\end{vmatrix}=det(A_{2})"
since
"x_{2}det(A)=det(A_{2}) \\implies x_{2}=\\frac{det(A_{2})}{det(A)}" and det(A) is not equal to zero.
Comments
Leave a comment