Question #114474
QUESTION 5

Let a11 x1 + a12 x2 + a13x3 = b1

a21 x1 + a22 x2 + a23 x3 = b2

a31 x1 + a32 x2 + a33 x3 = b3.

Show that if det (A) ≠ 0 where det(A) is the determinant of the coefficient matrix;

then x2 = det(A2)/det(A) where det(A2) is the determinant obtained by replacing the second column of det(A)

by (b1; b2; b3)^T
1
Expert's answer
2020-05-07T18:00:19-0400

Show that if det (A) ≠ 0 where det(A) is the determinant of the coefficient matrix

Let

a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3a_{11} x_{1} + a_{12} x_{2} + a_{13}x_{3} = b_{1}\\ a_{21} x_{1} + a_{22} x_{2} + a_{23}x_{3} = b_{2}\\ a_{31} x_{1} + a_{32} x_{2} + a_{33}x_{3} = b_{3}\\

coefficient matrix of A is given by:

A=[a11a12a13a21a22a23a31a32a33]A=\begin{bmatrix} a_{11}&a_{12}&a_{13} \\ a_{21} & a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{bmatrix}

det(A)det(A)


det(A)=a11a22a23a32a33a12a21a23a31a33+a13a21a22a31a32det(A)= a_{11}\begin{vmatrix} a_{22}& a_{23} \\ a_{32}& a_{33} \end{vmatrix}-a_{12}\begin{vmatrix} a_{21}& a_{23} \\ a_{31} & a_{33} \end{vmatrix}+a_{13}\begin{vmatrix} a_{21}& a_{22} \\ a_{31} & a_{32} \end{vmatrix}


det(A)=a11(a22a33a32a23)a12(a21a33a31a23)+a13(a21a32a31a22)det(A)=a_{11}(a_{22}a_{33}-a_{32}a_{23})-a_{12}(a_{21}a_{33}-a_{31}a_{23})+a_{13}(a_{21}a_{32}-a_{31}a_{22})


det(A)=a11a22a33a11a32a23a12a21a33+a12a31a23+a13a21a32a13a31a22det(A)=a_{11}a_{22}a_{33}-a_{11}a_{32}a_{23}-a_{12}a_{21}a_{33}+a_{12}a_{31}a_{23}+a_{13}a_{21}a_{32}-a_{13}a_{31}a_{22}

hence

det(A) is not equal to zero


solving by the property of determinant:

x2det(A)=a11x2a12a13a21x2a22a23a31x2a32a33x_{2}det(A)=\begin{vmatrix} a_{11}&x_{2}a_{12}&a_{13} \\ a_{21} & x_{2}a_{22}&a_{23}\\ a_{31}&x_{2}a_{32}&a_{33} \end{vmatrix}


applying the operation

c2=c2+x1c1+x3c3x2det(A)=a11a11x1+a12x2+a13x3a13a21a21x1+a22x2+a23x3a23a31a31x1+a32x2+a33x3a33c_{2}=c_{2}+x_{1}c_{1}+x_{3}c_{3}\\x_{2}det(A)=\begin{vmatrix} a_{11}&a_{11} x_{1} + a_{12} x_{2} + a_{13}x_{3}&a_{13} \\ a_{21} & a_{21} x_{1} + a_{22} x_{2} + a_{23}x_{3}&a_{23}\\ a_{31}&a_{31} x_{1} + a_{32} x_{2} + a_{33}x_{3}&a_{33} \end{vmatrix}\\

    x2det(A)=a11b1a13a21b2a23a31b3a33=det(A2)\implies\\x_{2}det(A)=\begin{vmatrix} a_{11}&b_{1}&a_{13} \\ a_{21} & b_{2}&a_{23}\\ a_{31}&b_{3}&a_{33} \end{vmatrix}=det(A_{2})


since

x2det(A)=det(A2)    x2=det(A2)det(A)x_{2}det(A)=det(A_{2}) \implies x_{2}=\frac{det(A_{2})}{det(A)} and det(A) is not equal to zero.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS