Show that if det (A) ≠ 0 where det(A) is the determinant of the coefficient matrix
Let
a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 a_{11} x_{1} + a_{12} x_{2} + a_{13}x_{3} = b_{1}\\
a_{21} x_{1} + a_{22} x_{2} + a_{23}x_{3} = b_{2}\\
a_{31} x_{1} + a_{32} x_{2} + a_{33}x_{3} = b_{3}\\ a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3
coefficient matrix of A is given by:
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] A=\begin{bmatrix}
a_{11}&a_{12}&a_{13} \\
a_{21} & a_{22}&a_{23}\\
a_{31}&a_{32}&a_{33}
\end{bmatrix} A = ⎣ ⎡ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ⎦ ⎤
d e t ( A ) det(A) d e t ( A )
d e t ( A ) = a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ∣ a 21 a 22 a 31 a 32 ∣ det(A)= a_{11}\begin{vmatrix}
a_{22}& a_{23} \\
a_{32}& a_{33}
\end{vmatrix}-a_{12}\begin{vmatrix}
a_{21}& a_{23} \\
a_{31} & a_{33}
\end{vmatrix}+a_{13}\begin{vmatrix}
a_{21}& a_{22} \\
a_{31} & a_{32}
\end{vmatrix} d e t ( A ) = a 11 ∣ ∣ a 22 a 32 a 23 a 33 ∣ ∣ − a 12 ∣ ∣ a 21 a 31 a 23 a 33 ∣ ∣ + a 13 ∣ ∣ a 21 a 31 a 22 a 32 ∣ ∣
d e t ( A ) = a 11 ( a 22 a 33 − a 32 a 23 ) − a 12 ( a 21 a 33 − a 31 a 23 ) + a 13 ( a 21 a 32 − a 31 a 22 ) det(A)=a_{11}(a_{22}a_{33}-a_{32}a_{23})-a_{12}(a_{21}a_{33}-a_{31}a_{23})+a_{13}(a_{21}a_{32}-a_{31}a_{22}) d e t ( A ) = a 11 ( a 22 a 33 − a 32 a 23 ) − a 12 ( a 21 a 33 − a 31 a 23 ) + a 13 ( a 21 a 32 − a 31 a 22 )
d e t ( A ) = a 11 a 22 a 33 − a 11 a 32 a 23 − a 12 a 21 a 33 + a 12 a 31 a 23 + a 13 a 21 a 32 − a 13 a 31 a 22 det(A)=a_{11}a_{22}a_{33}-a_{11}a_{32}a_{23}-a_{12}a_{21}a_{33}+a_{12}a_{31}a_{23}+a_{13}a_{21}a_{32}-a_{13}a_{31}a_{22} d e t ( A ) = a 11 a 22 a 33 − a 11 a 32 a 23 − a 12 a 21 a 33 + a 12 a 31 a 23 + a 13 a 21 a 32 − a 13 a 31 a 22
hence
det(A) is not equal to zero
solving by the property of determinant:
x 2 d e t ( A ) = ∣ a 11 x 2 a 12 a 13 a 21 x 2 a 22 a 23 a 31 x 2 a 32 a 33 ∣ x_{2}det(A)=\begin{vmatrix}
a_{11}&x_{2}a_{12}&a_{13} \\
a_{21} & x_{2}a_{22}&a_{23}\\
a_{31}&x_{2}a_{32}&a_{33}
\end{vmatrix} x 2 d e t ( A ) = ∣ ∣ a 11 a 21 a 31 x 2 a 12 x 2 a 22 x 2 a 32 a 13 a 23 a 33 ∣ ∣
applying the operation
c 2 = c 2 + x 1 c 1 + x 3 c 3 x 2 d e t ( A ) = ∣ a 11 a 11 x 1 + a 12 x 2 + a 13 x 3 a 13 a 21 a 21 x 1 + a 22 x 2 + a 23 x 3 a 23 a 31 a 31 x 1 + a 32 x 2 + a 33 x 3 a 33 ∣ c_{2}=c_{2}+x_{1}c_{1}+x_{3}c_{3}\\x_{2}det(A)=\begin{vmatrix}
a_{11}&a_{11} x_{1} + a_{12} x_{2} + a_{13}x_{3}&a_{13} \\
a_{21} & a_{21} x_{1} + a_{22} x_{2} + a_{23}x_{3}&a_{23}\\
a_{31}&a_{31} x_{1} + a_{32} x_{2} + a_{33}x_{3}&a_{33}
\end{vmatrix}\\ c 2 = c 2 + x 1 c 1 + x 3 c 3 x 2 d e t ( A ) = ∣ ∣ a 11 a 21 a 31 a 11 x 1 + a 12 x 2 + a 13 x 3 a 21 x 1 + a 22 x 2 + a 23 x 3 a 31 x 1 + a 32 x 2 + a 33 x 3 a 13 a 23 a 33 ∣ ∣
⟹ x 2 d e t ( A ) = ∣ a 11 b 1 a 13 a 21 b 2 a 23 a 31 b 3 a 33 ∣ = d e t ( A 2 ) \implies\\x_{2}det(A)=\begin{vmatrix}
a_{11}&b_{1}&a_{13} \\
a_{21} & b_{2}&a_{23}\\
a_{31}&b_{3}&a_{33}
\end{vmatrix}=det(A_{2}) ⟹ x 2 d e t ( A ) = ∣ ∣ a 11 a 21 a 31 b 1 b 2 b 3 a 13 a 23 a 33 ∣ ∣ = d e t ( A 2 )
since
x 2 d e t ( A ) = d e t ( A 2 ) ⟹ x 2 = d e t ( A 2 ) d e t ( A ) x_{2}det(A)=det(A_{2}) \implies x_{2}=\frac{det(A_{2})}{det(A)} x 2 d e t ( A ) = d e t ( A 2 ) ⟹ x 2 = d e t ( A ) d e t ( A 2 ) and det(A) is not equal to zero.
Comments