Answer to Question #113638 in Linear Algebra for kgodiso

Question #113638
consider the vectors;u(1,0)and v(0,1)
questions
1-determine cos theta,where theta is the angle between u and v.
2-determine the area of the parallelogram determined by u and v.


question 2
2.1-Let L1 and L2 be defined by x=W0+su where s is the element of real numbers
and y=w1+tv where t is the element of real numbers .
2.2-find the plane the passes through the point(2,4,-3)and is parallel to the plane -2x+4y-5z+5=0
2.3.find the line that passes through the point (2,5,3)and is perpendicular to the plane 2x-3y+4z+7=0
2.4find an equation of the plane passing through the point(-2,3,4)and is perpendicular to the line passing through the points (4,-2,5)and (0,2,4)
1
Expert's answer
2020-05-04T19:12:42-0400

"\\vec{u}=(1,0),\\vec{v}=(0,1)"

1.1

"\\vec{u}\\vec{v}=|\\vec{u}||\\vec{v}|\\cos\\theta\\\\\n\\cos\\theta=\\frac{\\vec{u}\\vec{v}}{|\\vec{u}||\\vec{v}|}\\\\\n\\vec{u}\\vec{v}=1\\cdot0+0\\cdot1=0\\\\\n\\cos\\theta=0"

1.2

"S=|\\vec{u}||\\vec{v}|\\sin\\theta\\\\\n|\\vec{u}|=\\sqrt{1^2+0^2}=1\\\\\n|\\vec{v}|=\\sqrt{0^2+1^2}=1\\\\\n\\cos\\theta=0, \\theta=90^0\\\\\nS=1\\cdot1\\cdot\\sin90^0=1"

2.1

"L_1:x=w_0+su,s\\in R\\\\\nw_0=(w_{00},w_{01}), u=(a,b)\\\\\nx=w_{00}+as\\\\\ny=w_{01}+bs,s\\in R\\\\\ns=\\frac{x-w_{00}}{a}\\\\\ny=w_{01}+b\\cdot\\frac{x-w_{00}}{a}\\\\\nk=\\frac{b}{a}\\\\\nL_1:x=w_1+tv,t\\in R\\\\\nw_1=(w_{10},w_{11}), v=(c,d)\\\\\nx=w_{10}+tc\\\\\ny=w_{11}+td,t\\in R\\\\\nt=\\frac{x-w_{10}}{c}\\\\\ny=w_{11}+d\\cdot\\frac{x-w_{10}}{c}\\\\\nk_1=\\frac{d}{c}\\\\\nL_1||L_2:\\\\\nk=pk_1\\\\\n\\frac{b}{a}=p\\cdot\\frac{d}{c}"

2.2

"\\alpha:-2x+4y-5z+5=0\\\\\n\\vec{n}=(-2,4,-5)\\\\\n\\beta: A(2,4,-3)\\in \\beta, \\vec{n}||\\beta\\\\\n-2(x-2)+4(y-4)-5(z+3)=0\\\\\n-2x+4y-5z-27=0"

2.3

"\\alpha:2x-3y+4z+7=0\\\\\n\\vec{n}=(2,-3,4) \\bot\\alpha\\\\\n\\alpha||a, \\vec{n}\\bot a, A(2,5,3)\\in a\\\\\n\\frac{x-2}{2}=\\frac{y-5}{-3}=\\frac{z-3}{4}"

2.4

"A(-2,3,4)\\in \\alpha\\\\\na:\\frac{x-4}{0-4}=\\frac{y+2}{2+2}=\\frac{z-5}{4-5}\\\\\n\\vec{a}=(-4,4,-1)\\bot\\alpha\\\\\n-4(x+2)+4(y-3)-(z-4)=0\\\\\n-4x+4y-z-16=0"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog