Answer to Question #113638 in Linear Algebra for kgodiso

Question #113638
consider the vectors;u(1,0)and v(0,1)
questions
1-determine cos theta,where theta is the angle between u and v.
2-determine the area of the parallelogram determined by u and v.


question 2
2.1-Let L1 and L2 be defined by x=W0+su where s is the element of real numbers
and y=w1+tv where t is the element of real numbers .
2.2-find the plane the passes through the point(2,4,-3)and is parallel to the plane -2x+4y-5z+5=0
2.3.find the line that passes through the point (2,5,3)and is perpendicular to the plane 2x-3y+4z+7=0
2.4find an equation of the plane passing through the point(-2,3,4)and is perpendicular to the line passing through the points (4,-2,5)and (0,2,4)
1
Expert's answer
2020-05-04T19:12:42-0400

u=(1,0),v=(0,1)\vec{u}=(1,0),\vec{v}=(0,1)

1.1

uv=uvcosθcosθ=uvuvuv=10+01=0cosθ=0\vec{u}\vec{v}=|\vec{u}||\vec{v}|\cos\theta\\ \cos\theta=\frac{\vec{u}\vec{v}}{|\vec{u}||\vec{v}|}\\ \vec{u}\vec{v}=1\cdot0+0\cdot1=0\\ \cos\theta=0

1.2

S=uvsinθu=12+02=1v=02+12=1cosθ=0,θ=900S=11sin900=1S=|\vec{u}||\vec{v}|\sin\theta\\ |\vec{u}|=\sqrt{1^2+0^2}=1\\ |\vec{v}|=\sqrt{0^2+1^2}=1\\ \cos\theta=0, \theta=90^0\\ S=1\cdot1\cdot\sin90^0=1

2.1

L1:x=w0+su,sRw0=(w00,w01),u=(a,b)x=w00+asy=w01+bs,sRs=xw00ay=w01+bxw00ak=baL1:x=w1+tv,tRw1=(w10,w11),v=(c,d)x=w10+tcy=w11+td,tRt=xw10cy=w11+dxw10ck1=dcL1L2:k=pk1ba=pdcL_1:x=w_0+su,s\in R\\ w_0=(w_{00},w_{01}), u=(a,b)\\ x=w_{00}+as\\ y=w_{01}+bs,s\in R\\ s=\frac{x-w_{00}}{a}\\ y=w_{01}+b\cdot\frac{x-w_{00}}{a}\\ k=\frac{b}{a}\\ L_1:x=w_1+tv,t\in R\\ w_1=(w_{10},w_{11}), v=(c,d)\\ x=w_{10}+tc\\ y=w_{11}+td,t\in R\\ t=\frac{x-w_{10}}{c}\\ y=w_{11}+d\cdot\frac{x-w_{10}}{c}\\ k_1=\frac{d}{c}\\ L_1||L_2:\\ k=pk_1\\ \frac{b}{a}=p\cdot\frac{d}{c}

2.2

α:2x+4y5z+5=0n=(2,4,5)β:A(2,4,3)β,nβ2(x2)+4(y4)5(z+3)=02x+4y5z27=0\alpha:-2x+4y-5z+5=0\\ \vec{n}=(-2,4,-5)\\ \beta: A(2,4,-3)\in \beta, \vec{n}||\beta\\ -2(x-2)+4(y-4)-5(z+3)=0\\ -2x+4y-5z-27=0

2.3

α:2x3y+4z+7=0n=(2,3,4)ααa,na,A(2,5,3)ax22=y53=z34\alpha:2x-3y+4z+7=0\\ \vec{n}=(2,-3,4) \bot\alpha\\ \alpha||a, \vec{n}\bot a, A(2,5,3)\in a\\ \frac{x-2}{2}=\frac{y-5}{-3}=\frac{z-3}{4}

2.4

A(2,3,4)αa:x404=y+22+2=z545a=(4,4,1)α4(x+2)+4(y3)(z4)=04x+4yz16=0A(-2,3,4)\in \alpha\\ a:\frac{x-4}{0-4}=\frac{y+2}{2+2}=\frac{z-5}{4-5}\\ \vec{a}=(-4,4,-1)\bot\alpha\\ -4(x+2)+4(y-3)-(z-4)=0\\ -4x+4y-z-16=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment