Given matrix A = [ 4 3 5 1 3 − 5 2 1 5 ] \left[ {\begin{array}{cc}
4 & 3 & 5 \\
1 & 3 & -5 \\
2 & 1 & 5 \\
\end{array} } \right] ⎣ ⎡ 4 1 2 3 3 1 5 − 5 5 ⎦ ⎤
1) By expanding along the second row,
det(A) = (-1) ∣ 3 5 1 5 ∣ \begin{vmatrix}
3 & 5 \\
1 & 5
\end{vmatrix} ∣ ∣ 3 1 5 5 ∣ ∣ + 3 ∣ 4 5 2 5 ∣ \begin{vmatrix}
4 & 5 \\
2 & 5
\end{vmatrix} ∣ ∣ 4 2 5 5 ∣ ∣ - (-5) ∣ 4 3 2 1 ∣ \begin{vmatrix}
4 & 3 \\
2 & 1
\end{vmatrix} ∣ ∣ 4 2 3 1 ∣ ∣
= (-1)(15-5) + 3(20-10) + 5(4-6) = -10 + 30 -10 = 10
2) Now since D = det(A) ≠ \neq = 0, so Cramers rule can be used to solve the given system of equation AX=b where X = [x y z]' , b = [0 0 a]' and a ≠ \neq = 0.
Now Dx = ∣ 0 3 5 0 3 − 5 a 1 5 ∣ \left|
\begin{array}{cc}
0 & 3 & 5 \\
0 & 3 & -5 \\
a & 1 & 5 \\
\end{array}
\right| ∣ ∣ 0 0 a 3 3 1 5 − 5 5 ∣ ∣ = a(-15-15) = -30a ≠ \neq = 0 (expanding along the first column)
Dy = ∣ 4 0 5 1 0 − 5 2 a 5 ∣ \left|
\begin{array}{cc}
4 & 0 & 5 \\
1 & 0 & -5 \\
2 & a & 5 \\
\end{array}
\right| ∣ ∣ 4 1 2 0 0 a 5 − 5 5 ∣ ∣ = -a(-20-5) = 25a ≠ \neq = 0 (expanding along the second column)
Dz = ∣ 4 3 0 1 3 0 2 1 a ∣ \left|
\begin{array}{cc}
4 & 3 & 0 \\
1 & 3 & 0 \\
2 & 1 & a \\
\end{array}
\right| ∣ ∣ 4 1 2 3 3 1 0 0 a ∣ ∣ = a(12-3) = 9a ≠ \neq = 0 (expanding along the third column)
So solution of the given system is
x = D x D = − 30 a 10 = − 3 a , y = D y D = 25 a 10 = 2.5 a , z = D z D = 9 a 10 = 0.9 a x = \frac{D_x}{D} = \frac{-30a}{10} = -3a, y = \frac{D_y}{D} = \frac{25a}{10} = 2.5a, z = \frac{D_z}{D} = \frac{9a}{10} = 0.9a x = D D x = 10 − 30 a = − 3 a , y = D D y = 10 25 a = 2.5 a , z = D D z = 10 9 a = 0.9 a
Comments
Dear Thabisile Ndlovu, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Very helpful