Question #111229
Solve the following system of linear equations by using the inverse matrix
method: (10)
x + y + z = 4
-2x - y + 3z = 1
y + 5z = 9
1
Expert's answer
2020-04-22T14:13:18-0400

Solve the following system of linear equations using an inverse matrix

x+y+z=42xy+3z=1y+5z=9x+y+z=4\\ -2x-y+3z=1\\ y+5z=9

Solution


A=(111213015)A=\begin{pmatrix} 1 & 1&1 \\ -2 & -1&3\\ 0&1&5 \end{pmatrix}

B=(419)B=\begin{pmatrix} 4 \\ 1 \\ 9 \end{pmatrix}

X=(yxz)X=\begin{pmatrix} y \\ x\\ z \end{pmatrix}

AX=BA∙X=B

that is

X=A-1 ∙B

Find the determinant of matrix A:

detA=111213015=1(1)5+130+1(2)11(1)01311(2)5=5+0203+10=0detA=\begin{vmatrix} 1 & 1&1 \\ -2 & -1&3\\ 0&1&5 \end{vmatrix}= 1·(-1)·5 + 1·3·0 + 1·(-2)·1 - 1·(-1)·0 - 1·3·1 - 1·(-2)·5 =-5 + 0 - 2 - 0 - 3 + 10 = 0

Answer: Since the determinant of the matrix is zero, the system has no solution.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS