Solve the following system of linear equations using an inverse matrix
x+y+z=4−2x−y+3z=1y+5z=9x+y+z=4\\ -2x-y+3z=1\\ y+5z=9x+y+z=4−2x−y+3z=1y+5z=9
Solution
A=(111−2−13015)A=\begin{pmatrix} 1 & 1&1 \\ -2 & -1&3\\ 0&1&5 \end{pmatrix}A=⎝⎛1−201−11135⎠⎞
B=(419)B=\begin{pmatrix} 4 \\ 1 \\ 9 \end{pmatrix}B=⎝⎛419⎠⎞
X=(yxz)X=\begin{pmatrix} y \\ x\\ z \end{pmatrix}X=⎝⎛yxz⎠⎞
A∙X=BA∙X=BA∙X=B
that is
X=A-1 ∙B
Find the determinant of matrix A:
detA=∣111−2−13015∣=1⋅(−1)⋅5+1⋅3⋅0+1⋅(−2)⋅1−1⋅(−1)⋅0−1⋅3⋅1−1⋅(−2)⋅5=−5+0−2−0−3+10=0detA=\begin{vmatrix} 1 & 1&1 \\ -2 & -1&3\\ 0&1&5 \end{vmatrix}= 1·(-1)·5 + 1·3·0 + 1·(-2)·1 - 1·(-1)·0 - 1·3·1 - 1·(-2)·5 =-5 + 0 - 2 - 0 - 3 + 10 = 0detA=∣∣1−201−11135∣∣=1⋅(−1)⋅5+1⋅3⋅0+1⋅(−2)⋅1−1⋅(−1)⋅0−1⋅3⋅1−1⋅(−2)⋅5=−5+0−2−0−3+10=0
Answer: Since the determinant of the matrix is zero, the system has no solution.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments