9.2 As per the given question,
As per demoiver's theorem,
"(\\cos\\theta+i\\sin \\theta)^5=\\cos 5\\theta +i\\sin5\\theta"
Now, let the binomial expansion of the left part,
"\\cos^5\\theta+5\\cos^4\\theta(i\\sin\\theta)+10\\cos^3\\theta(i\\sin\\theta)^2+10\\cos^2\\theta(i\\sin\\theta)^3+5\\cos\\theta(i\\sin\\theta)^4+(i\\sin\\theta)^5"
Now, equating the real and imaginary part of the above,
"\\cos 5\\theta =\\cos^5\\theta \u2212 10\u2009\\cos^3\u2009\\theta\u2009\\sin2\\theta + 5\u2009\\cos\\theta\u2009\\sin4\\theta"
Similarly,
"(\\cos\\theta+i\\sin \\theta)^4=\\cos 4\\theta +i\\sin4\\theta"
Now the expansion lhs of the equation,
"\\cos^4\\theta+4\\cos^3\\theta(i\\sin\\theta)+6\\cos^2\\theta(i\\sin\\theta)^2+4\\cos\\theta(i\\sin\\theta)^3+(i\\sin\\theta)^4"
Now, comparing the real and imaginary part,
"\\sin 4\\theta=4\\cos^3\\theta \\sin \\theta +4 \\cos\\theta \\sin^3\\theta"
9.3 As per the question, data is insufficient to answer 9.3, I am taking some assumptions,
that it is z is the complex number,
the polar form of the complex number, z= a("\\cos\\theta+i\\sin \\theta" )
As per the question, it is given that w is the negative real number so,"(w)=(2k+1)\\pi"
k=6,
"w=13\\pi"
"z^6=a^6(\\cos\\theta+i\\sin\\theta)^6"
As per the demovier's rule
"=a^6(\\cos6\\theta+i\\sin6\\theta)"
6th real root ="\\cos 6\\theta=\\cos 13\\pi" =-1
"z=re^{i\u03b8}" and convert1to polar form to get
"z^6=w"
z and w in polar form "z=re^{i\u03b8},w=se^{i\u03c6}" . Then "z^6=w"
becomes:"(re^{i\u03b8})^6=r^6e^{in\u03b8}=se^{i\u03c6}"
"r^6=s"
"e^{6\\theta}=e^{i\\phi}"
"r^6=s"
"r=s^{1\/6}"
"\u03b8=\u03c6\/n+2\u03c0l\/n=2\\pi\/6=\\pi\/3+2\u03c0l\/6"
6th root of the "=re^{i(\\pi\/3+2\u03c0l\/6)}"
As data is not insufficient and incomplete so have chooses some approximation.
Comments
Leave a comment