Question #110820
State De Moivre’s Theorem. (2)
9.2 Express cos 5θ and sin 4θ as polynomials in terms of sin θ and cos θ. (8)
9.3 Let w be a negative real number, z a 6
th root of w.
(a) Show that z (k) = ρ
1
6
-

cos
1
Expert's answer
2020-04-27T18:18:23-0400

9.2 As per the given question,

As per demoiver's theorem,

(cosθ+isinθ)5=cos5θ+isin5θ(\cos\theta+i\sin \theta)^5=\cos 5\theta +i\sin5\theta

Now, let the binomial expansion of the left part,

cos5θ+5cos4θ(isinθ)+10cos3θ(isinθ)2+10cos2θ(isinθ)3+5cosθ(isinθ)4+(isinθ)5\cos^5\theta+5\cos^4\theta(i\sin\theta)+10\cos^3\theta(i\sin\theta)^2+10\cos^2\theta(i\sin\theta)^3+5\cos\theta(i\sin\theta)^4+(i\sin\theta)^5

Now, equating the real and imaginary part of the above,

cos5θ=cos5θ10cos3θsin2θ+5cosθsin4θ\cos 5\theta =\cos^5\theta − 10 \cos^3 \theta \sin2\theta + 5 \cos\theta \sin4\theta

Similarly,

(cosθ+isinθ)4=cos4θ+isin4θ(\cos\theta+i\sin \theta)^4=\cos 4\theta +i\sin4\theta

Now the expansion lhs of the equation,

cos4θ+4cos3θ(isinθ)+6cos2θ(isinθ)2+4cosθ(isinθ)3+(isinθ)4\cos^4\theta+4\cos^3\theta(i\sin\theta)+6\cos^2\theta(i\sin\theta)^2+4\cos\theta(i\sin\theta)^3+(i\sin\theta)^4

Now, comparing the real and imaginary part,

sin4θ=4cos3θsinθ+4cosθsin3θ\sin 4\theta=4\cos^3\theta \sin \theta +4 \cos\theta \sin^3\theta


9.3 As per the question, data is insufficient to answer 9.3, I am taking some assumptions,

that it is z is the complex number,

the polar form of the complex number, z= a(cosθ+isinθ\cos\theta+i\sin \theta )

As per the question, it is given that w is the negative real number so,(w)=(2k+1)π(w)=(2k+1)\pi

k=6,

w=13πw=13\pi

z6=a6(cosθ+isinθ)6z^6=a^6(\cos\theta+i\sin\theta)^6

As per the demovier's rule

=a6(cos6θ+isin6θ)=a^6(\cos6\theta+i\sin6\theta)

6th real root =cos6θ=cos13π\cos 6\theta=\cos 13\pi =-1


z=reiθz=re^{iθ} and convert1to polar form to get

z6=wz^6=w

z and w in polar form z=reiθ,w=seiφz=re^{iθ},w=se^{iφ} . Then z6=wz^6=w

becomes:(reiθ)6=r6einθ=seiφ(re^{iθ})^6=r^6e^{inθ}=se^{iφ}

r6=sr^6=s

e6θ=eiϕe^{6\theta}=e^{i\phi}

r6=sr^6=s

r=s1/6r=s^{1/6}

θ=φ/n+2πl/n=2π/6=π/3+2πl/6θ=φ/n+2πl/n=2\pi/6=\pi/3+2πl/6

6th root of the =rei(π/3+2πl/6)=re^{i(\pi/3+2πl/6)}

As data is not insufficient and incomplete so have chooses some approximation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS