Answer to Question #110826 in Linear Algebra for Hetisani Sewela

Question #110826
Is the matrix
A =


1 1 1
2 3 0
3 8 3

 .
invertible? (5)
4.2 Solve the following system by Gauss-Jordan elimination
x + y + z = 2
2x + 3y + 2z = 5
3x + 8y + z = 11
(10)
4.3 Now solve the system in 4.2 by applying Cramer’s Rule.
1
Expert's answer
2020-04-23T18:50:19-0400

It is necessary to determine whether the matrix

"A=\\begin{pmatrix}\n 1 & 1&1 \\\\\n 2 & 3&0 \\\\\n 3 & 8& 3 \n\\end{pmatrix}"

is invertible.

To calculate the inverse matrix, we write down matrix A with additional identity matrix:

"\\left(\\begin{matrix}\n1 & 1 & 1 \\vert& 1 & 0 & 0 \\\\\n2 & 3 & 0\\vert & 0 & 1 & 0 \\\\\n3 & 8 & 3\\vert & 0 & 0 & 1\n\\end{matrix}\\right)"

To find the inverse matrix, we will use elementary transformations over the rows of the matrix, turn the left part of the resulting matrix into a single one.

Subtract the 1st row, multiplied by 2; subtract the 1st row multiplied by 3 from the 3rd row

"\\left(\\begin{matrix}\n1 & 1 & 1& \\vert& 1 & 0 & 0 \\\\\n0 & 1& -2&\\vert & -2 & 1 & 0 \\\\\n0 &5 & 0&\\vert & -3 & 0 & 1\n\\end{matrix}\\right)"

subtract the second row multiplied by 1 from the 1st row; subtract the 2nd row multiplied by 5 from the 3rd row

"\\left(\\begin{matrix}\n1 & 0 & 3& \\vert& 3 & -1 & 0 \\\\\n0 & 1& -2&\\vert & -2 & 1 & 0 \\\\\n0 &0 & 10&\\vert & 7 & -5 & 1\n\\end{matrix}\\right)"

The 3rd line is divisible by 10

"\\left(\\begin{matrix}\n1 & 0 & 3& \\vert& 3 & -1 & 0 \\\\\n0 & 1& -2&\\vert & -2 & 1 & 0 \\\\\n0 &0 & 1&\\vert & 0.7 & -0.5 & 0.1\n\\end{matrix}\\right)"

subtract from the 1st row the 3rd row multiplied by 3; to the 2nd row add the 3rd row multiplied by 2

"\\left(\\begin{matrix}\n1 & 0 & 0& \\vert& 0.9 & 0.5 & -0.3 \\\\\n0 & 1& 0&\\vert & -0.6 & 0 & 0.2 \\\\\n0 &0 & 1&\\vert & 0.7 & -0.5 & 0.1\n\\end{matrix}\\right)"

Answer:

"\\left(\\begin{matrix}\n1 & 0 & 0& \\vert& 0.9 & 0.5 & -0.3 \\\\\n0 & 1& 0&\\vert & -0.6 & 0 & 0.2 \\\\\n0 &0 & 1&\\vert & 0.7 & -0.5 & 0.1\n\\end{matrix}\\right)"

"A^{-1}=\\begin{pmatrix}\n 0.9 & 0.5&-0.3 \\\\\n -0.6 &0 &0.2 \\\\\n 0.7 & -0.5& 0.1 \n\\end{pmatrix}"

4.2 Solve the following system by eliminating Gauss-Jordan

x + y + z = 2

2x + 3y + 2z = 5

3x + 8y + z = 11 

Expansion of the matrix of systems to the step form is given:


"\\begin{pmatrix}\n 1 & 1&1&\\vert2 \\\\\n 2 & 3&2 &\\vert5 \\\\\n 3 & 8& 1&\\vert11 \n\\end{pmatrix}\nR_2-2*R_1\\mapsto R_2\n\\begin{pmatrix}\n 1 & 1&1&\\vert2 \\\\\n 0 & 1&0 &\\vert1 \\\\\n 3 & 8& 1&\\vert11 \n\\end{pmatrix}\nR_3-3*R_1\\mapsto R_3\\\\\n\\begin{pmatrix}\n 1 & 1&1&\\vert2 \\\\\n 0 & 1&0 &\\vert1 \\\\\n 0 &5& -2&\\vert5 \n\\end{pmatrix}\nR_3-5*R_2\\mapsto R_3 \n\\begin{pmatrix}\n 1 & 1&1&\\vert2 \\\\\n 0 & 1&0 &\\vert1 \\\\\n 0 & 0& -2&\\vert0 \n\\end{pmatrix}\n\\frac{R_3}{-2}\\mapsto R_3\\\\\n\\begin{pmatrix}\n 1 & 1&1&\\vert2 \\\\\n 0 & 1&0 &\\vert1 \\\\\n 0 & 0& 1&\\vert0 \n\\end{pmatrix}\nR_1-1*R_3\\mapsto R_1\\\\ \n\\begin{pmatrix}\n 1 & 0&0&\\vert1 \\\\\n 0 & 1&0 &\\vert1 \\\\\n 0 & 0& 1&\\vert0 \n\\end{pmatrix}"

"\\begin{cases}\n x=1 \\\\\n y=1 (1)\\\\\nz=0\n\\end{cases}"


From equation 3 of system (1) we find the variable z

z=0

From equation 2 of system (1) we find the variable y

y=1

From equation 1 of system (1) we find the variable x

x=1

Answer: x=1; y=1; z=0.

The overall solution "X=\\begin{pmatrix}\n 1 \\\\\n 1 \\\\\n 0 \\\\\n\\end{pmatrix}"

4.3 Now solve the system in 4.2, applying the Cramer's rule.


"\\begin{cases}\n x+y+z=2 \\\\\n 2x+3y+2z=5 \\\\\n3x+8y+z=11\n\\end{cases}\\\\\n\\Delta=\\begin{vmatrix}\n 1 & 1&1 \\\\\n 2 & 3&2\\\\\n3&8&1\n\\end{vmatrix}=-2 \\\\\n\\Delta_1=\\begin{vmatrix}\n 2 & 1&1 \\\\\n 5 & 3&2\\\\\n11&8&1\n\\end{vmatrix}=-2 \\\\\n\n\\Delta_2=\\begin{vmatrix}\n 1 & 2&1 \\\\\n 2 & 5&2\\\\\n3&11&1\n\\end{vmatrix}=-2 \\\\\n\\Delta_3=\\begin{vmatrix}\n 1 & 1&2 \\\\\n 2 & 3&5\\\\\n3&8&11\n\\end{vmatrix}=0 \\\\\nx=\\frac{\\Delta_1}{\\Delta}=\\frac{-2}{-2}=1\\\\\ny=\\frac{\\Delta_2}{\\Delta}=\\frac{-2}{-2}=1\\\\\nz=\\frac{\\Delta_3}{\\Delta}=\\frac{0}{-2}=0\\\\"


Answer: x=1; y=1; z=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog