It is necessary to determine whether the matrix
"A=\\begin{pmatrix}\n 1 & 1&1 \\\\\n 2 & 3&0 \\\\\n 3 & 8& 3 \n\\end{pmatrix}"
is invertible.
To calculate the inverse matrix, we write down matrix A with additional identity matrix:
"\\left(\\begin{matrix}\n1 & 1 & 1 \\vert& 1 & 0 & 0 \\\\\n2 & 3 & 0\\vert & 0 & 1 & 0 \\\\\n3 & 8 & 3\\vert & 0 & 0 & 1\n\\end{matrix}\\right)"
To find the inverse matrix, we will use elementary transformations over the rows of the matrix, turn the left part of the resulting matrix into a single one.
Subtract the 1st row, multiplied by 2; subtract the 1st row multiplied by 3 from the 3rd row
"\\left(\\begin{matrix}\n1 & 1 & 1& \\vert& 1 & 0 & 0 \\\\\n0 & 1& -2&\\vert & -2 & 1 & 0 \\\\\n0 &5 & 0&\\vert & -3 & 0 & 1\n\\end{matrix}\\right)"
subtract the second row multiplied by 1 from the 1st row; subtract the 2nd row multiplied by 5 from the 3rd row
"\\left(\\begin{matrix}\n1 & 0 & 3& \\vert& 3 & -1 & 0 \\\\\n0 & 1& -2&\\vert & -2 & 1 & 0 \\\\\n0 &0 & 10&\\vert & 7 & -5 & 1\n\\end{matrix}\\right)"
The 3rd line is divisible by 10
"\\left(\\begin{matrix}\n1 & 0 & 3& \\vert& 3 & -1 & 0 \\\\\n0 & 1& -2&\\vert & -2 & 1 & 0 \\\\\n0 &0 & 1&\\vert & 0.7 & -0.5 & 0.1\n\\end{matrix}\\right)"
subtract from the 1st row the 3rd row multiplied by 3; to the 2nd row add the 3rd row multiplied by 2
"\\left(\\begin{matrix}\n1 & 0 & 0& \\vert& 0.9 & 0.5 & -0.3 \\\\\n0 & 1& 0&\\vert & -0.6 & 0 & 0.2 \\\\\n0 &0 & 1&\\vert & 0.7 & -0.5 & 0.1\n\\end{matrix}\\right)"
Answer:
"\\left(\\begin{matrix}\n1 & 0 & 0& \\vert& 0.9 & 0.5 & -0.3 \\\\\n0 & 1& 0&\\vert & -0.6 & 0 & 0.2 \\\\\n0 &0 & 1&\\vert & 0.7 & -0.5 & 0.1\n\\end{matrix}\\right)"
"A^{-1}=\\begin{pmatrix}\n 0.9 & 0.5&-0.3 \\\\\n -0.6 &0 &0.2 \\\\\n 0.7 & -0.5& 0.1 \n\\end{pmatrix}"
4.2 Solve the following system by eliminating Gauss-Jordan
x + y + z = 2
2x + 3y + 2z = 5
3x + 8y + z = 11
Expansion of the matrix of systems to the step form is given:
"\\begin{pmatrix}\n 1 & 1&1&\\vert2 \\\\\n 2 & 3&2 &\\vert5 \\\\\n 3 & 8& 1&\\vert11 \n\\end{pmatrix}\nR_2-2*R_1\\mapsto R_2\n\\begin{pmatrix}\n 1 & 1&1&\\vert2 \\\\\n 0 & 1&0 &\\vert1 \\\\\n 3 & 8& 1&\\vert11 \n\\end{pmatrix}\nR_3-3*R_1\\mapsto R_3\\\\\n\\begin{pmatrix}\n 1 & 1&1&\\vert2 \\\\\n 0 & 1&0 &\\vert1 \\\\\n 0 &5& -2&\\vert5 \n\\end{pmatrix}\nR_3-5*R_2\\mapsto R_3 \n\\begin{pmatrix}\n 1 & 1&1&\\vert2 \\\\\n 0 & 1&0 &\\vert1 \\\\\n 0 & 0& -2&\\vert0 \n\\end{pmatrix}\n\\frac{R_3}{-2}\\mapsto R_3\\\\\n\\begin{pmatrix}\n 1 & 1&1&\\vert2 \\\\\n 0 & 1&0 &\\vert1 \\\\\n 0 & 0& 1&\\vert0 \n\\end{pmatrix}\nR_1-1*R_3\\mapsto R_1\\\\ \n\\begin{pmatrix}\n 1 & 0&0&\\vert1 \\\\\n 0 & 1&0 &\\vert1 \\\\\n 0 & 0& 1&\\vert0 \n\\end{pmatrix}"
"\\begin{cases}\n x=1 \\\\\n y=1 (1)\\\\\nz=0\n\\end{cases}"
From equation 3 of system (1) we find the variable z
z=0
From equation 2 of system (1) we find the variable y
y=1
From equation 1 of system (1) we find the variable x
x=1
Answer: x=1; y=1; z=0.
The overall solution "X=\\begin{pmatrix}\n 1 \\\\\n 1 \\\\\n 0 \\\\\n\\end{pmatrix}"
4.3 Now solve the system in 4.2, applying the Cramer's rule.
Answer: x=1; y=1; z=0
Comments
Leave a comment