It is necessary to determine whether the matrix
A = ( 1 1 1 2 3 0 3 8 3 ) A=\begin{pmatrix}
1 & 1&1 \\
2 & 3&0 \\
3 & 8& 3
\end{pmatrix} A = ⎝ ⎛ 1 2 3 1 3 8 1 0 3 ⎠ ⎞
is invertible.
To calculate the inverse matrix, we write down matrix A with additional identity matrix:
( 1 1 1 ∣ 1 0 0 2 3 0 ∣ 0 1 0 3 8 3 ∣ 0 0 1 ) \left(\begin{matrix}
1 & 1 & 1 \vert& 1 & 0 & 0 \\
2 & 3 & 0\vert & 0 & 1 & 0 \\
3 & 8 & 3\vert & 0 & 0 & 1
\end{matrix}\right) ⎝ ⎛ 1 2 3 1 3 8 1∣ 0∣ 3∣ 1 0 0 0 1 0 0 0 1 ⎠ ⎞
To find the inverse matrix, we will use elementary transformations over the rows of the matrix, turn the left part of the resulting matrix into a single one.
Subtract the 1st row, multiplied by 2; subtract the 1st row multiplied by 3 from the 3rd row
( 1 1 1 ∣ 1 0 0 0 1 − 2 ∣ − 2 1 0 0 5 0 ∣ − 3 0 1 ) \left(\begin{matrix}
1 & 1 & 1& \vert& 1 & 0 & 0 \\
0 & 1& -2&\vert & -2 & 1 & 0 \\
0 &5 & 0&\vert & -3 & 0 & 1
\end{matrix}\right) ⎝ ⎛ 1 0 0 1 1 5 1 − 2 0 ∣ ∣ ∣ 1 − 2 − 3 0 1 0 0 0 1 ⎠ ⎞
subtract the second row multiplied by 1 from the 1st row; subtract the 2nd row multiplied by 5 from the 3rd row
( 1 0 3 ∣ 3 − 1 0 0 1 − 2 ∣ − 2 1 0 0 0 10 ∣ 7 − 5 1 ) \left(\begin{matrix}
1 & 0 & 3& \vert& 3 & -1 & 0 \\
0 & 1& -2&\vert & -2 & 1 & 0 \\
0 &0 & 10&\vert & 7 & -5 & 1
\end{matrix}\right) ⎝ ⎛ 1 0 0 0 1 0 3 − 2 10 ∣ ∣ ∣ 3 − 2 7 − 1 1 − 5 0 0 1 ⎠ ⎞
The 3rd line is divisible by 10
( 1 0 3 ∣ 3 − 1 0 0 1 − 2 ∣ − 2 1 0 0 0 1 ∣ 0.7 − 0.5 0.1 ) \left(\begin{matrix}
1 & 0 & 3& \vert& 3 & -1 & 0 \\
0 & 1& -2&\vert & -2 & 1 & 0 \\
0 &0 & 1&\vert & 0.7 & -0.5 & 0.1
\end{matrix}\right) ⎝ ⎛ 1 0 0 0 1 0 3 − 2 1 ∣ ∣ ∣ 3 − 2 0.7 − 1 1 − 0.5 0 0 0.1 ⎠ ⎞
subtract from the 1st row the 3rd row multiplied by 3; to the 2nd row add the 3rd row multiplied by 2
( 1 0 0 ∣ 0.9 0.5 − 0.3 0 1 0 ∣ − 0.6 0 0.2 0 0 1 ∣ 0.7 − 0.5 0.1 ) \left(\begin{matrix}
1 & 0 & 0& \vert& 0.9 & 0.5 & -0.3 \\
0 & 1& 0&\vert & -0.6 & 0 & 0.2 \\
0 &0 & 1&\vert & 0.7 & -0.5 & 0.1
\end{matrix}\right) ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ∣ ∣ ∣ 0.9 − 0.6 0.7 0.5 0 − 0.5 − 0.3 0.2 0.1 ⎠ ⎞
Answer:
( 1 0 0 ∣ 0.9 0.5 − 0.3 0 1 0 ∣ − 0.6 0 0.2 0 0 1 ∣ 0.7 − 0.5 0.1 ) \left(\begin{matrix}
1 & 0 & 0& \vert& 0.9 & 0.5 & -0.3 \\
0 & 1& 0&\vert & -0.6 & 0 & 0.2 \\
0 &0 & 1&\vert & 0.7 & -0.5 & 0.1
\end{matrix}\right) ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ∣ ∣ ∣ 0.9 − 0.6 0.7 0.5 0 − 0.5 − 0.3 0.2 0.1 ⎠ ⎞
A − 1 = ( 0.9 0.5 − 0.3 − 0.6 0 0.2 0.7 − 0.5 0.1 ) A^{-1}=\begin{pmatrix}
0.9 & 0.5&-0.3 \\
-0.6 &0 &0.2 \\
0.7 & -0.5& 0.1
\end{pmatrix} A − 1 = ⎝ ⎛ 0.9 − 0.6 0.7 0.5 0 − 0.5 − 0.3 0.2 0.1 ⎠ ⎞
4.2 Solve the following system by eliminating Gauss-Jordan
x + y + z = 2
2x + 3y + 2z = 5
3x + 8y + z = 11
Expansion of the matrix of systems to the step form is given:
( 1 1 1 ∣ 2 2 3 2 ∣ 5 3 8 1 ∣ 11 ) R 2 − 2 ∗ R 1 ↦ R 2 ( 1 1 1 ∣ 2 0 1 0 ∣ 1 3 8 1 ∣ 11 ) R 3 − 3 ∗ R 1 ↦ R 3 ( 1 1 1 ∣ 2 0 1 0 ∣ 1 0 5 − 2 ∣ 5 ) R 3 − 5 ∗ R 2 ↦ R 3 ( 1 1 1 ∣ 2 0 1 0 ∣ 1 0 0 − 2 ∣ 0 ) R 3 − 2 ↦ R 3 ( 1 1 1 ∣ 2 0 1 0 ∣ 1 0 0 1 ∣ 0 ) R 1 − 1 ∗ R 3 ↦ R 1 ( 1 0 0 ∣ 1 0 1 0 ∣ 1 0 0 1 ∣ 0 ) \begin{pmatrix}
1 & 1&1&\vert2 \\
2 & 3&2 &\vert5 \\
3 & 8& 1&\vert11
\end{pmatrix}
R_2-2*R_1\mapsto R_2
\begin{pmatrix}
1 & 1&1&\vert2 \\
0 & 1&0 &\vert1 \\
3 & 8& 1&\vert11
\end{pmatrix}
R_3-3*R_1\mapsto R_3\\
\begin{pmatrix}
1 & 1&1&\vert2 \\
0 & 1&0 &\vert1 \\
0 &5& -2&\vert5
\end{pmatrix}
R_3-5*R_2\mapsto R_3
\begin{pmatrix}
1 & 1&1&\vert2 \\
0 & 1&0 &\vert1 \\
0 & 0& -2&\vert0
\end{pmatrix}
\frac{R_3}{-2}\mapsto R_3\\
\begin{pmatrix}
1 & 1&1&\vert2 \\
0 & 1&0 &\vert1 \\
0 & 0& 1&\vert0
\end{pmatrix}
R_1-1*R_3\mapsto R_1\\
\begin{pmatrix}
1 & 0&0&\vert1 \\
0 & 1&0 &\vert1 \\
0 & 0& 1&\vert0
\end{pmatrix} ⎝ ⎛ 1 2 3 1 3 8 1 2 1 ∣2 ∣5 ∣11 ⎠ ⎞ R 2 − 2 ∗ R 1 ↦ R 2 ⎝ ⎛ 1 0 3 1 1 8 1 0 1 ∣2 ∣1 ∣11 ⎠ ⎞ R 3 − 3 ∗ R 1 ↦ R 3 ⎝ ⎛ 1 0 0 1 1 5 1 0 − 2 ∣2 ∣1 ∣5 ⎠ ⎞ R 3 − 5 ∗ R 2 ↦ R 3 ⎝ ⎛ 1 0 0 1 1 0 1 0 − 2 ∣2 ∣1 ∣0 ⎠ ⎞ − 2 R 3 ↦ R 3 ⎝ ⎛ 1 0 0 1 1 0 1 0 1 ∣2 ∣1 ∣0 ⎠ ⎞ R 1 − 1 ∗ R 3 ↦ R 1 ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ∣1 ∣1 ∣0 ⎠ ⎞
{ x = 1 y = 1 ( 1 ) z = 0 \begin{cases}
x=1 \\
y=1 (1)\\
z=0
\end{cases} ⎩ ⎨ ⎧ x = 1 y = 1 ( 1 ) z = 0
From equation 3 of system (1) we find the variable z
z=0
From equation 2 of system (1) we find the variable y
y=1
From equation 1 of system (1) we find the variable x
x=1
Answer: x=1; y=1; z=0.
The overall solution X = ( 1 1 0 ) X=\begin{pmatrix}
1 \\
1 \\
0 \\
\end{pmatrix} X = ⎝ ⎛ 1 1 0 ⎠ ⎞
4.3 Now solve the system in 4.2, applying the Cramer's rule.
{ x + y + z = 2 2 x + 3 y + 2 z = 5 3 x + 8 y + z = 11 Δ = ∣ 1 1 1 2 3 2 3 8 1 ∣ = − 2 Δ 1 = ∣ 2 1 1 5 3 2 11 8 1 ∣ = − 2 Δ 2 = ∣ 1 2 1 2 5 2 3 11 1 ∣ = − 2 Δ 3 = ∣ 1 1 2 2 3 5 3 8 11 ∣ = 0 x = Δ 1 Δ = − 2 − 2 = 1 y = Δ 2 Δ = − 2 − 2 = 1 z = Δ 3 Δ = 0 − 2 = 0 \begin{cases}
x+y+z=2 \\
2x+3y+2z=5 \\
3x+8y+z=11
\end{cases}\\
\Delta=\begin{vmatrix}
1 & 1&1 \\
2 & 3&2\\
3&8&1
\end{vmatrix}=-2 \\
\Delta_1=\begin{vmatrix}
2 & 1&1 \\
5 & 3&2\\
11&8&1
\end{vmatrix}=-2 \\
\Delta_2=\begin{vmatrix}
1 & 2&1 \\
2 & 5&2\\
3&11&1
\end{vmatrix}=-2 \\
\Delta_3=\begin{vmatrix}
1 & 1&2 \\
2 & 3&5\\
3&8&11
\end{vmatrix}=0 \\
x=\frac{\Delta_1}{\Delta}=\frac{-2}{-2}=1\\
y=\frac{\Delta_2}{\Delta}=\frac{-2}{-2}=1\\
z=\frac{\Delta_3}{\Delta}=\frac{0}{-2}=0\\ ⎩ ⎨ ⎧ x + y + z = 2 2 x + 3 y + 2 z = 5 3 x + 8 y + z = 11 Δ = ∣ ∣ 1 2 3 1 3 8 1 2 1 ∣ ∣ = − 2 Δ 1 = ∣ ∣ 2 5 11 1 3 8 1 2 1 ∣ ∣ = − 2 Δ 2 = ∣ ∣ 1 2 3 2 5 11 1 2 1 ∣ ∣ = − 2 Δ 3 = ∣ ∣ 1 2 3 1 3 8 2 5 11 ∣ ∣ = 0 x = Δ Δ 1 = − 2 − 2 = 1 y = Δ Δ 2 = − 2 − 2 = 1 z = Δ Δ 3 = − 2 0 = 0
Answer: x=1; y=1; z=0
Comments