We need to evaluate the determinant of matrix A using second row and also solve the system of equations by Cramer's rule .
The given matrix is
"A = \\begin{bmatrix}\n 4 & 3 & 5\\\\\n 1 & 3 & -5\\\\ \n 2 & 1 & 5\n\\end{bmatrix}"
(6.1) Evaluation of the determinant of the given matrix A.
Determinant of A = det A = "\\begin{vmatrix}\n 4 & 3 & 5\\\\\n 1 & 3 & -5 \\\\\n 2 & 1 & 5\n\\end{vmatrix}"
"= -1 \\begin{vmatrix}\n 3 & 5 \\\\\n 1 & 5\n\\end{vmatrix} + 3 \\begin{vmatrix}\n 4 & 5 \\\\\n 2 & 5\n\\end{vmatrix} - (-5) \\begin{vmatrix}\n 4 & 3 \\\\\n 2 & 1\n\\end{vmatrix}"
"= -1 ( 3\\times5 - 1 \\times 5) + 3 ( 4 \\times 5 - 2 \\times 5) +5 ( 4 \\times 1 - 2 \\times 3)"
"= -1( 15 - 5) + 3( 20 - 10) + 5(4 - 6)"
"= -10 + 30 -10 = 10"
"det \\space A = 10"
(6.2). Solving of system of equation by using Cramer's rule
"A \\begin{bmatrix}\n x \\\\\n y \\\\\n z\n\\end{bmatrix} = \\begin{bmatrix}\n 0 \\\\\n 0 \\\\\n a\n\\end{bmatrix} and \\space a\\ne 0"
where, "A = \\begin{bmatrix}\n 4 & 3 & 5\\\\\n 1 & 3 & -5\\\\ \n 2 & 1 & 5\n\\end{bmatrix}"
"D=|A | = 10 \\ne 0"
Yes, we can use the cramer's rule to solve the system of equations
Answer column is = "\\begin{bmatrix}\n 0 \\\\\n 0 \\\\\n a\n\\end{bmatrix}"
"D_x =" coefficient determinant with answer-column values in x-column
"= \\begin{vmatrix}\n 0 & 3 & 5\\\\\n 0 & 3 & -5\\\\ \n a & 1 & 5\n\\end{vmatrix}"
"= - 0\\begin{vmatrix}\n 3 & 5 \\\\\n 1 & 5\n\\end{vmatrix} + 3 \\begin{vmatrix}\n 0 & 5 \\\\\n a & 5\n\\end{vmatrix} - (-5) \\begin{vmatrix}\n 0 & 3 \\\\\n a & 1\n\\end{vmatrix}"
"= 0 + 3 (0 - 5a) +5 (0-3a) = - 15a -15a =-30a"
"D_y =" coefficient determinant with answer-column values in y-column
"= \\begin{vmatrix}\n 4 & 0 & 5\\\\\n 1 & 0 & -5 \\\\\n 2 & a & 5\n\\end{vmatrix}"
"= -1 \\begin{vmatrix}\n 0 & 5 \\\\\n a & 5\n\\end{vmatrix} + 0 \\begin{vmatrix}\n 4 & 5 \\\\\n 2 & 5\n\\end{vmatrix} - (-5) \\begin{vmatrix}\n 4 & 0 \\\\\n 2 & a\n\\end{vmatrix}"
"D_y = -1 (0-5a) + 0 +5 (4a -0) = 5a +20a = 25a"
"D_z =" coefficient determinant with answer-column values in z-column
"=\\begin{vmatrix}\n 4 & 3 & 0\\\\\n 1 & 3 & 0 \\\\\n 2 & 1 & a\n\\end{vmatrix}"
"= -1 \\begin{vmatrix}\n 3 & 0 \\\\\n 1 & a\n\\end{vmatrix} + 3 \\begin{vmatrix}\n 4 & 0 \\\\\n 2 & a\n\\end{vmatrix} -0 \\begin{vmatrix}\n 4 & 3 \\\\\n 2 & 1\n\\end{vmatrix}"
"= -1(3a -0) +3(4a -0) +0 = - 3a +12a = 9a"
Using Cramer's rule,
"x = \\frac {D_x} {D} = \\frac {-30a} {10} = -3a"
"z = \\frac {D_z}{D} = \\frac {9a}{10}"
Comments
Leave a comment