Question #109479
LET A and B be any two matrices such that B in the inverse of A.

1) Determine the relationship between the adjoint of A and the adjoint of B (5 MARKS)

2) Determine the relationship between the transpose of A and the transpose of B (5 marks).

Please assist.
1
Expert's answer
2020-04-22T17:42:48-0400

B=A1B=A^{-1}

Let AA^* be adjoint of AA,

BB^* be adjoint of BB.


1)

A1=AdetAA^{-1}=\frac{A^*}{detA} and B1=BdetBB^{-1}=\frac{B^*}{detB}

B=A1=AdetAB=A^{-1}=\frac{A^*}{detA} (multyply by B1B^{-1} )

BB1=AdetAB1BB^{-1}=\frac{A^*}{detA}B^{-1}

E=AdetABdetBE=\frac{A^*}{detA}\frac{B*}{detB}

E=AdetABdet(A1)E=\frac{A^*}{detA}\frac{B*}{det(A^{-1})}

E=ABE=A^*B^*

B=(A)1B^*=(A^*)^{-1}


2)

A=B1A=B^{-1}

AT=(B1)TA^T=(B^{-1})^T

AT=(BT)1A^T=(B^T)^{-1}

Another proof:

AB=EAB=E

(AB)T=ET(AB)^T=E^T

BTAT=EB^TA^T=E

(BT)1BTAT=(BT)1E(B^T)^{-1}B^TA^T=(B^T)^{-1}E

AT=(BT)1A^T=(B^T)^{-1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS