Let matrix P P P be
P = k ( 1 a b c d e x 1 x 2 1 1 x 3 x 4 1 1 1 1 ) P=k\begin{pmatrix}
1 & a & b & c \\
d & e & x_1 & x_2 \\
1 & 1 & x_3 & x_4 \\
1 & 1 & 1 & 1
\end{pmatrix} P = k ⎝ ⎛ 1 d 1 1 a e 1 1 b x 1 x 3 1 c x 2 x 4 1 ⎠ ⎞ Let
r 1 = ( 1 d 1 1 ) , r 2 = ( a e 1 1 ) , r 3 = ( b x 1 x 3 1 ) , r 4 = ( c x 2 x 4 1 ) r_1=\begin{pmatrix}
1 \\
d \\
1 \\
1
\end{pmatrix},r_2=\begin{pmatrix}
a \\
e \\
1 \\
1
\end{pmatrix},r_3=\begin{pmatrix}
b \\
x_1 \\
x_3 \\
1
\end{pmatrix}, r_4=\begin{pmatrix}
c \\
x_2 \\
x_4 \\
1
\end{pmatrix} r 1 = ⎝ ⎛ 1 d 1 1 ⎠ ⎞ , r 2 = ⎝ ⎛ a e 1 1 ⎠ ⎞ , r 3 = ⎝ ⎛ b x 1 x 3 1 ⎠ ⎞ , r 4 = ⎝ ⎛ c x 2 x 4 1 ⎠ ⎞ P P P is an orthogonal matrix
P P T = I PP^T=I P P T = I Then
r 1 r 2 = r 1 r 3 = r 1 r 4 = r 2 r 3 = r 2 r 4 = r 3 r 4 = 0 r_1r_2=r_1r_3=r_1r_4=r_2r_3=r_2r_4=r_3r_4=0 r 1 r 2 = r 1 r 3 = r 1 r 4 = r 2 r 3 = r 2 r 4 = r 3 r 4 = 0 a + e d + 1 + 1 = 0 a+ed+1+1=0 a + e d + 1 + 1 = 0 b + d x 1 + x 3 + 1 = 0 b+dx_1+x_3+1=0 b + d x 1 + x 3 + 1 = 0 c + d x 2 + x 4 + 1 = 0 c+dx_2+x_4+1=0 c + d x 2 + x 4 + 1 = 0 a b + e x 1 + x 3 + 1 = 0 ab+ex_1+x_3+1=0 ab + e x 1 + x 3 + 1 = 0 a c + e x 2 + x 4 + 1 = 0 ac+ex_2+x_4+1=0 a c + e x 2 + x 4 + 1 = 0 b c + x 1 x 2 + x 3 x 4 + 1 = 0 bc+x_1x_2+x_3x_4+1=0 b c + x 1 x 2 + x 3 x 4 + 1 = 0 Let d = 1. d=1. d = 1. Then
a + e + 2 = 0 a+e+2=0 a + e + 2 = 0 b + x 1 + x 3 + 1 = 0 b+x_1+x_3+1=0 b + x 1 + x 3 + 1 = 0 c + x 2 + x 4 + 1 = 0 c+x_2+x_4+1=0 c + x 2 + x 4 + 1 = 0 a b + e x 1 + x 3 + 1 = 0 ab+ex_1+x_3+1=0 ab + e x 1 + x 3 + 1 = 0 a c + e x 2 + x 4 + 1 = 0 ac+ex_2+x_4+1=0 a c + e x 2 + x 4 + 1 = 0 b c + x 1 x 2 + x 3 x 4 + 1 = 0 bc+x_1x_2+x_3x_4+1=0 b c + x 1 x 2 + x 3 x 4 + 1 = 0 Solve
a = − 1 , b = − 1 , c = 1 , d = 1 , e = − 1 , a=-1, b=-1,c=1, d=1, e=-1, a = − 1 , b = − 1 , c = 1 , d = 1 , e = − 1 ,
x 1 = 1 , x 2 = − 1 , x 3 = − 1 , x 4 = − 1 x_1=1, x_2=-1,x_3=-1, x_4=-1 x 1 = 1 , x 2 = − 1 , x 3 = − 1 , x 4 = − 1
k 2 r 1 2 = k 2 r 2 2 = k 2 r 3 2 = k 2 r 4 2 = 1 k^2r_1^2=k^2r_2^2=k^2r_3^2=k^2r_4^2=1 k 2 r 1 2 = k 2 r 2 2 = k 2 r 3 2 = k 2 r 4 2 = 1
k = ± 0.5 k=\pm0.5 k = ± 0.5
P = 0.5 ( 1 − 1 − 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 1 1 1 ) , P T = 0.5 ( 1 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1 1 1 − 1 1 ) P=0.5\begin{pmatrix}
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1
\end{pmatrix},P^T=0.5\begin{pmatrix}
1 & 1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1
\end{pmatrix} P = 0.5 ⎝ ⎛ 1 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 ⎠ ⎞ , P T = 0.5 ⎝ ⎛ 1 − 1 − 1 1 1 − 1 1 1 1 1 − 1 − 1 1 1 1 1 ⎠ ⎞
P P T = 0.5 ( 1 − 1 − 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 1 1 1 ) ( 1 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 ) = PP^T=0.5\begin{pmatrix}
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1
\end{pmatrix}\begin{pmatrix}
1 & 1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1
\end{pmatrix}= P P T = 0.5 ⎝ ⎛ 1 1 1 1 − 1 − 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 ⎠ ⎞ ⎝ ⎛ 1 − 1 − 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 1 1 1 ⎠ ⎞ =
= ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) = I =\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}=I = ⎝ ⎛ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ⎠ ⎞ = I
x 1 = 1 , x 2 = − 1 , x 3 = − 1 , x 4 = − 1 x_1=1, x_2=-1,x_3=-1, x_4=-1 x 1 = 1 , x 2 = − 1 , x 3 = − 1 , x 4 = − 1
Comments