aei+bfg+cdh-ceg-afh-bdi=8
The total multiplier in a row (column) can be taken as the sign of the determinant
∣(g+2a)(h+2b)(i+2c)3a3b3c2a2b2c∣\begin{vmatrix} (g+2a)& (h+2b)&(i+2c)\\ 3a&3b&3c\\ 2a&2b&2c \end{vmatrix}∣∣(g+2a)3a2a(h+2b)3b2b(i+2c)3c2c∣∣ =3∗∣(g+2a)(h+2b)(i+2c)abc2a2b2c∣\\=3*\begin{vmatrix} (g+2a)& (h+2b)&(i+2c)\\ a&b&c\\ 2a&2b&2c \end{vmatrix}=3∗∣∣(g+2a)a2a(h+2b)b2b(i+2c)c2c∣∣
The determinant is zero, since the second and third rows are proportional
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments