R(A)⊥= a basis of the orthogonal complement of R(A).
Let R(A)={v1,v2,v3}, where
v1=(1,0,4,0),v2=(0,1,2,−1) and v3=(1,−1,2,1).
Since v2+v3−v1=0, the vectors v1,v2,v3 are linearly dependent. Thus, {v1,v2} is the maximal subset of linearly independent vectors in the row space.
If wi∈R(A)⊥, wi=(ai,bi,ci,di), v1=(1,0,4,0)∈R(A), v2=(0,1,2,−1)∈R(A), then wi⋅v1=0,wi⋅v2=0, hence ai+4ci=0,bi+2ci−di=0.
If c1=1,d1=0, then a1=−4c1=−4, b1=−2c1+d1=−2, hence w1=(a1,b1,c1,d1)=(−4,−2,1,0).
If c2=0,d2=1, then a2=−4c2=0, b2=−2c2+d2=1, hence w2=(a2,b2,c2,d2)=(0,1,0,1).
Thus, R(A)⊥={w1,w2}={(−4,−2,1,0),(0,1,0,1)}.
Comments
Thank you for correcting us.
your answer is incorrect, the ans is not orthogonal.