Question #106956
Find a basis for R(A)^⊥, where R(A) denotes the row space of the matrix
A where A is a 3x4 matrix (1 0 4 0 \ 0 1 2 -1 \ 1 -1 2 1)
1
Expert's answer
2020-03-31T05:29:03-0400

R(A)=R(A)^{\perp}= a basis of the orthogonal complement of R(A).R(A).

Let R(A)={v1,v2,v3},R(A)=\{ v_1,v_2,v_3 \}, where

v1=(1,0,4,0),v2=(0,1,2,1) and v3=(1,1,2,1)v_1=(1,0,4,0),v_2=(0,1,2,-1) \ \text{and} \ v_3=(1,-1,2,1).

Since v2+v3v1=0,v_2+v_3-v_1=0, the vectors v1,v2,v3v_1, v_2, v_3 are linearly dependent. Thus, {v1,v2}\{v_1,v_2\} is the maximal subset of linearly independent vectors in the row space.

If wiR(A)w_i \in R(A)^{\perp}, wi=(ai,bi,ci,di),w_i=(a_i,b_i,c_i,d_i), v1=(1,0,4,0)R(A),v_1=(1,0,4,0) \in R(A), v2=(0,1,2,1)R(A),v_2=(0,1,2,-1) \in R(A), then wiv1=0,wiv2=0,w_i\cdot v_1=0,w_i \cdot v_2=0, hence ai+4ci=0,bi+2cidi=0.a_i+4c_i=0, b_i+2c_i-d_i=0.

If c1=1,d1=0,c_1=1, d_1=0, then a1=4c1=4,a_1=-4c_1=-4, b1=2c1+d1=2,b_1=-2c_1+d_1=-2, hence w1=(a1,b1,c1,d1)=(4,2,1,0).w_1=(a_1,b_1,c_1,d_1)=(-4,-2,1,0).

If c2=0,d2=1,c_2=0,d_2=1, then a2=4c2=0,a_2=-4c_2=0, b2=2c2+d2=1,b_2=-2c_2+d_2=1, hence w2=(a2,b2,c2,d2)=(0,1,0,1).w_2=(a_2,b_2,c_2,d_2)=(0,1,0,1).

Thus, R(A)={w1,w2}={(4,2,1,0),(0,1,0,1)}.R(A)^{\perp}=\{w_1,w_2\}=\{ (-4,-2,1,0),(0,1,0,1)\}.






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
31.03.20, 12:39

Thank you for correcting us.

xx
30.03.20, 22:40

your answer is incorrect, the ans is not orthogonal.

LATEST TUTORIALS
APPROVED BY CLIENTS