Answer to Question #108256 in Linear Algebra for havefun7741

Question #108256
[img]https://upload.cc/i1/2020/04/06/lcgHuW.jpg[/img]


question is in photo, R=4
1
Expert's answer
2020-04-14T15:00:26-0400

"A=\\begin{bmatrix}\n a & 1&0\\\\\n1&0&b\\\\\n 0 &b&a\n\\end{bmatrix}, a\\neq0"

(a) "A^{-1}:\\\\\nC=\\begin{bmatrix}\n a & 1&0|1&0&0 \\\\\n 1&0&b|0&1&0\\\\\n0&b&a|0&0&1\n\\end{bmatrix}"

IIr"\\leftrightarrow" Ir

"C=\\begin{bmatrix}\n 1&0&b|0&1&0\\\\\n a & 1&0|1&0&0 \\\\\n0&b&a|0&0&1\n\\end{bmatrix}"

IIr+Ir(-a)

"C=\\begin{bmatrix}\n 1&0&b|0&1&0\\\\\n 0 & 1&-ab|1&-a&0 \\\\\n0&b&a|0&0&1\n\\end{bmatrix}"

IIIr+IIr(-b)

"C=\\begin{bmatrix}\n 1&0&b|0&1&0\\\\\n 0 & 1&-ab|1&-a&0 \\\\\n0&0&a+ab^2|-b&ab&1\n\\end{bmatrix}"


IIIr"\\cdot\\frac{1}{a(1+b^2)}"

"C=\\begin{bmatrix}\n 1&0&b|0&1&0\\\\\n 0 & 1&-ab|1&-a&0 \\\\\n0&0&1|\\frac{-b}{a(1+b^2)}\n&\\frac{b}{(1+b^2)}\n&\\frac{1}{a(1+b^2)}\n\n\\end{bmatrix}"


Ir+IIIr(-b)

IIr+IIIr(ab)

"C=\\begin{bmatrix}\n 1&0&0|\\frac{b^2}{a(1+b^2)}&\\frac{1}{1+b^2}\n&\\frac{-b}{a(1+b^2)}\\\\\n 0 & 1&0|\\frac{1}{1+b^2}\n&\\frac{-a}{1+b^2}\n&\\frac{b}{(1+b^2)} \\\\\n0&0&1|\\frac{-b}{a(1+b^2)}\n&\\frac{b}{(1+b^2)}&\n\\frac{1}{a\n(1+b^2)}\n\\end{bmatrix}"

"A^{-1}=\\begin{bmatrix}\n \\frac{b^2}{a(1+b^2)}&\\frac{1}{1+b^2}\n&\\frac{-b}{a(1+b^2)}\\\\\n\\frac{1}{1+b^2}\n&\\frac{-a}{1+b^2}\n&\\frac{b}{(1+b^2)} \\\\\n\\frac{-b}{a(1+b^2)}\n&\\frac{b}{(1+b^2)}&\n\\frac{1}{a\n(1+b^2)}\n\\end{bmatrix}"

"detA=a(1+b^2)"


(b) R=4, R+2=6

"\\begin{Bmatrix}\n x_1-3x_3=6 \\\\\n2x_1+x_2=1\\\\\n9x_2-6x_3=-2 \n\\end{Bmatrix}"

"A=\\begin{bmatrix}\n 1&0&-3 \\\\\n 2&1&0\\\\\n0&9&-6\n\\end{bmatrix}\nB=\\begin{bmatrix}\n 6 \\\\\n 1\\\\-2\n\\end{bmatrix}\nX=\\begin{bmatrix}\n x_1\\\\ x_2\\\\x_3\\end{bmatrix}\\\\\nAX=B\\\\\nX=A^{-1}B\\\\\nC=\\begin{bmatrix}\n 1 & 0&-3|1&0&0 \\\\\n 2 &1&0|0&1&0\\\\\n0&9&-6|0&0&1\n\\end{bmatrix}"

IIr+Ir(-2)

"C=\\begin{bmatrix}\n 1 & 0&-3|1&0&0 \\\\\n 0 &1&6|-2&1&0\\\\\n0&9&-6|0&0&1\n\\end{bmatrix}"

IIIr+IIr(-9)

"C=\\begin{bmatrix}\n 1 & 0&-3|1&0&0 \\\\\n 0 &1&6|-2&1&0\\\\\n0&0&-60|18&-9\n&1\n\\end{bmatrix}"


IIIr"\\cdot\\frac{1}{-60}"

"C=\\begin{bmatrix}\n 1 & 0&-3|1&0&0 \\\\\n 0 &1&6|-2&1&0\\\\\n0&0&1|-\\frac{3}{10}\n&\\frac{3}{20}&-\\frac{1}{60}\n\n\\end{bmatrix}"

Ir+IIIr(3)

IIr+IIIr(-6)

"C=\\begin{bmatrix}\n 1 & 0&0|\\frac{1}{10}&\\frac{9}{20}&-\\frac{1}{20}\n \\\\\n 0 &1&0|-\\frac{1}{5}&-\\frac{1}{10}&-\\frac{1}{60}\n\\\\\n0&0&1|-\\frac{3}{10}\n&\\frac{3}{20}&-\\frac{1}{60}\n\n\\end{bmatrix}"

"A^{-1}=\\begin{bmatrix}\n \\frac{1}{10}&\\frac{9}{20}&-\\frac{1}{20}\n \\\\\n-\\frac{1}{5}&-\\frac{1}{10}&-\\frac{1}{60}\n\\\\\n-\\frac{3}{10}\n&\\frac{3}{20}&-\\frac{1}{60}\n\n\\end{bmatrix}"

"X=\\begin{bmatrix}\n \\frac{1}{10}&\\frac{9}{20}&-\\frac{1}{20}\n \\\\\n-\\frac{1}{5}&-\\frac{1}{10}&-\\frac{1}{60}\n\\\\\n-\\frac{3}{10}\n&\\frac{3}{20}&-\\frac{1}{60}\n\n\\end{bmatrix}\\cdot\n\\begin{bmatrix}\n 6 \\\\1\\\\-2\n\\end{bmatrix}=\\\\\n=\\begin{bmatrix}\n \\frac{23}{20}\\\\\n-\\frac{38}{30}\\\\\n-\\frac{97}{60}\n\\end{bmatrix}"


(c)

"det(adj(AB^{-1}))=det(adj(A))det(adj(B^{-1}))\\\\\ndet(adj(A))=det(A)=a(1+b^2)\\\\\ndet(B)=R+3=7\\\\\ndet(adj(B^{-1}))=\\frac{1}{7}\\\\\ndet(adj(AB^{-1}))=\\frac{a(1+b^2)}{7}"

Question 3

"A=[a_1\\quad\na_2\\quad\na_3]=\\begin{bmatrix}\n a_{11}&a_{12}&a_{13}\n\\\\\na_{21}&a_{22}&a_{23} \\\\\na_{31}&\na_{32}&a_{33} \n\\end{bmatrix}\\\\\ndetA\\neq0\\\\\nB=[2a_1+4a_2-2a_3\\quad -a_1-4a_2+3a_3\\\\\n\\quad a_2-a_3\\quad 3a_1-2a_2+6a_3]=\\\\\n=\\begin{bmatrix}\nb_1\\quad b_2 \\quad b_3 \\quad b_4\n\n\\end{bmatrix}"

"b_1=\\begin{bmatrix}\n 2a_{11}+4a_{12}-2a_{13}\\\\\n2a_{21}+4a_{22}-2a_{23}\\\\\n 2a_{31}+4a_{32}-2a_{33}\\\\\n\\end{bmatrix}\\\\\nb_2=\\begin{bmatrix}\n -a_{11}-4a_{12}+3a_{13}\\\\\n -a_{21}-4a_{22}+3a_{23}\\\\\n -a_{31}-4a_{32}+3a_{33}\n\\end{bmatrix}\\\\\nb_3=\\begin{bmatrix}\n a_{12}-a_{13}\\\\\n a_{22}-a_{23}\\\\\n a_{32}-a_{33}\n\\end{bmatrix}\\\\\nb_4=\\begin{bmatrix}\n 3a_{11}-2a_{12}+6a_{13}\\\\\n 3a_{21}-2a_{22}+6a_{23}\\\\\n 3a_{31}-2a_{32}+6a_{33}\n\\end{bmatrix}"

"Bx=b\\\\\nB:3\\times4\\\\\nb:3\n\\times1\\\\\nx:3\\times1"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog