Question #108061
let T:P2-->P2 defined by T(a+bx+cx^2)=(2b+3cx+(a-b)x^2) check T is linear trnsfrmtn.find matrix wrt bases B={x2,x2+x,x2+x+1} ,B2={1,x,x2}.find kernel of T
1
Expert's answer
2020-04-15T17:04:34-0400

T(a+bx+cx2)=2b+3cx+(ab)x2T(a+bx+cx^2)=2b+3cx+(a-b)x^2

It should satisfy

(i)T(u+v)=T(u)+T(v)(i)T(u+v)=T(u)+T(v)

(ii)T(mu)=mT(u)(ii)T(mu)=mT(u)

u=f+ex+dx2;v=i+hx+gx2u=f+ex+dx^2;v=i+hx+gx^2


(i)T(u+v)=T((i+f)+(e+h)x+(d+g)x2)(i)T(u+v)=T((i+f)+(e+h)x+(d+g)x^2)

=2(e+h)+3(d+g)x+(i+fch)x2=2(e+h)+3(d+g)x+(i+f-c-h)x^2

=[2e+3dx+(fe)x2]+[2h+3gx+(ih)x2]=[2e+3dx+(f-e)x^2]+[2h+3gx+(i-h)x^2]

=T(u)+T(v)=T(u)+T(v)


(ii)T(mu)=T(mf+mex+mdx2)(ii)T(mu)=T(mf+mex+mdx^2)

=2me+3mdx+(mfme)x2=2me+3mdx+(mf-me)x^2

=m(2e+3dx+(fe)x2)=m(2e+3dx+(f-e)x^2)

=mT(u)=mT(u)


So,T is a linear Transformation.


B1=(x2,x2+x,x2+x+1)B_1=({x^2,x^2+x,x^2+x+1})

T(x2)=3x=3(x2+x)3(x2)+0.(x2+x+1)T(x^2)=3x=3(x^2+x)-3(x^2)+0.(x^2+x+1)

T(x2+x)=2+3xx2=(4).x2+1.(x2+x)+2.(x2+x+1)T(x^2+x)=2+3x-x^2=(-4).x^2+1.(x^2+x)+2.(x^2+x+1)

T(x2+x+1)=2+3x=(3).x2+1.(x2+x)+2.(x2+x+1)T(x^2+x+1)=2+3x=(-3).x^2+1.(x^2+x)+2.(x^2+x+1)

The coefficient of T(x2) is (330)\begin{pmatrix} -3 \\ 3\\ 0 \end{pmatrix}


The coefficient of T(x2+x) is (412)\begin{pmatrix} -4 \\ 1\\ 2 \end{pmatrix}


The coefficient of T(x2+x+1) is (312)\begin{pmatrix} -3 \\ 1\\ 2 \end{pmatrix}


So the matrix is [343311022]\begin{bmatrix} -3& -4 &-3\\ 3 & 1&1\\ 0&2&2 \end{bmatrix}

B2=(1,x,x2)B_2=(1,x,x^2)

T(1)=x2T(1)=x^2

T(x)=2x2T(x)=2-x^2

T(x2)=3xT(x^2)=3x

The coefficient of T(1) is (001)\begin{pmatrix} 0 \\ 0\\ 1 \end{pmatrix}


The coefficient of T(x) is (201)\begin{pmatrix} 2 \\ 0\\ -1 \end{pmatrix}


The coefficient of T(x2) is (030)\begin{pmatrix} 0 \\ 3\\ 0 \end{pmatrix}


So,the matrix is [020003110]\begin{bmatrix} 0 & 2 &0\\ 0 & 0&3\\ 1&-1&0 \end{bmatrix}


Ker T={v: T(v)=0T(v)=0 }

2b+3cx+(ab)x2=02b+3cx+(a-b)x^2=0

2b=0;3c=0;(ab)=02b=0;3c=0;(a-b)=0

b=0,c=0,a=b=0b=0,c=0,a=b=0

a=b=c=0a=b=c=0

So,v=0

Ker T={0}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS