T ( a + b x + c x 2 ) = 2 b + 3 c x + ( a − b ) x 2 T(a+bx+cx^2)=2b+3cx+(a-b)x^2 T ( a + b x + c x 2 ) = 2 b + 3 c x + ( a − b ) x 2
It should satisfy
( i ) T ( u + v ) = T ( u ) + T ( v ) (i)T(u+v)=T(u)+T(v) ( i ) T ( u + v ) = T ( u ) + T ( v )
( i i ) T ( m u ) = m T ( u ) (ii)T(mu)=mT(u) ( ii ) T ( m u ) = m T ( u )
u = f + e x + d x 2 ; v = i + h x + g x 2 u=f+ex+dx^2;v=i+hx+gx^2 u = f + e x + d x 2 ; v = i + h x + g x 2
( i ) T ( u + v ) = T ( ( i + f ) + ( e + h ) x + ( d + g ) x 2 ) (i)T(u+v)=T((i+f)+(e+h)x+(d+g)x^2) ( i ) T ( u + v ) = T (( i + f ) + ( e + h ) x + ( d + g ) x 2 )
= 2 ( e + h ) + 3 ( d + g ) x + ( i + f − c − h ) x 2 =2(e+h)+3(d+g)x+(i+f-c-h)x^2 = 2 ( e + h ) + 3 ( d + g ) x + ( i + f − c − h ) x 2
= [ 2 e + 3 d x + ( f − e ) x 2 ] + [ 2 h + 3 g x + ( i − h ) x 2 ] =[2e+3dx+(f-e)x^2]+[2h+3gx+(i-h)x^2] = [ 2 e + 3 d x + ( f − e ) x 2 ] + [ 2 h + 3 gx + ( i − h ) x 2 ]
= T ( u ) + T ( v ) =T(u)+T(v) = T ( u ) + T ( v )
( i i ) T ( m u ) = T ( m f + m e x + m d x 2 ) (ii)T(mu)=T(mf+mex+mdx^2) ( ii ) T ( m u ) = T ( m f + m e x + m d x 2 )
= 2 m e + 3 m d x + ( m f − m e ) x 2 =2me+3mdx+(mf-me)x^2 = 2 m e + 3 m d x + ( m f − m e ) x 2
= m ( 2 e + 3 d x + ( f − e ) x 2 ) =m(2e+3dx+(f-e)x^2) = m ( 2 e + 3 d x + ( f − e ) x 2 )
= m T ( u ) =mT(u) = m T ( u )
So,T is a linear Transformation.
B 1 = ( x 2 , x 2 + x , x 2 + x + 1 ) B_1=({x^2,x^2+x,x^2+x+1}) B 1 = ( x 2 , x 2 + x , x 2 + x + 1 )
T ( x 2 ) = 3 x = 3 ( x 2 + x ) − 3 ( x 2 ) + 0. ( x 2 + x + 1 ) T(x^2)=3x=3(x^2+x)-3(x^2)+0.(x^2+x+1) T ( x 2 ) = 3 x = 3 ( x 2 + x ) − 3 ( x 2 ) + 0. ( x 2 + x + 1 )
T ( x 2 + x ) = 2 + 3 x − x 2 = ( − 4 ) . x 2 + 1. ( x 2 + x ) + 2. ( x 2 + x + 1 ) T(x^2+x)=2+3x-x^2=(-4).x^2+1.(x^2+x)+2.(x^2+x+1) T ( x 2 + x ) = 2 + 3 x − x 2 = ( − 4 ) . x 2 + 1. ( x 2 + x ) + 2. ( x 2 + x + 1 )
T ( x 2 + x + 1 ) = 2 + 3 x = ( − 3 ) . x 2 + 1. ( x 2 + x ) + 2. ( x 2 + x + 1 ) T(x^2+x+1)=2+3x=(-3).x^2+1.(x^2+x)+2.(x^2+x+1) T ( x 2 + x + 1 ) = 2 + 3 x = ( − 3 ) . x 2 + 1. ( x 2 + x ) + 2. ( x 2 + x + 1 )
The coefficient of T(x2 ) is ( − 3 3 0 ) \begin{pmatrix}
-3 \\
3\\
0
\end{pmatrix} ⎝ ⎛ − 3 3 0 ⎠ ⎞
The coefficient of T(x2 +x) is ( − 4 1 2 ) \begin{pmatrix}
-4 \\
1\\
2
\end{pmatrix} ⎝ ⎛ − 4 1 2 ⎠ ⎞
The coefficient of T(x2 +x+1) is ( − 3 1 2 ) \begin{pmatrix}
-3 \\
1\\
2
\end{pmatrix} ⎝ ⎛ − 3 1 2 ⎠ ⎞
So the matrix is [ − 3 − 4 − 3 3 1 1 0 2 2 ] \begin{bmatrix}
-3& -4 &-3\\
3 & 1&1\\
0&2&2
\end{bmatrix} ⎣ ⎡ − 3 3 0 − 4 1 2 − 3 1 2 ⎦ ⎤
B 2 = ( 1 , x , x 2 ) B_2=(1,x,x^2) B 2 = ( 1 , x , x 2 )
T ( 1 ) = x 2 T(1)=x^2 T ( 1 ) = x 2
T ( x ) = 2 − x 2 T(x)=2-x^2 T ( x ) = 2 − x 2
T ( x 2 ) = 3 x T(x^2)=3x T ( x 2 ) = 3 x
The coefficient of T(1) is ( 0 0 1 ) \begin{pmatrix}
0 \\
0\\
1
\end{pmatrix} ⎝ ⎛ 0 0 1 ⎠ ⎞
The coefficient of T(x) is ( 2 0 − 1 ) \begin{pmatrix}
2 \\
0\\
-1
\end{pmatrix} ⎝ ⎛ 2 0 − 1 ⎠ ⎞
The coefficient of T(x2 ) is ( 0 3 0 ) \begin{pmatrix}
0 \\
3\\
0
\end{pmatrix} ⎝ ⎛ 0 3 0 ⎠ ⎞
So,the matrix is [ 0 2 0 0 0 3 1 − 1 0 ] \begin{bmatrix}
0 & 2 &0\\
0 & 0&3\\
1&-1&0
\end{bmatrix} ⎣ ⎡ 0 0 1 2 0 − 1 0 3 0 ⎦ ⎤
Ker T={v: T ( v ) = 0 T(v)=0 T ( v ) = 0 }
2 b + 3 c x + ( a − b ) x 2 = 0 2b+3cx+(a-b)x^2=0 2 b + 3 c x + ( a − b ) x 2 = 0
2 b = 0 ; 3 c = 0 ; ( a − b ) = 0 2b=0;3c=0;(a-b)=0 2 b = 0 ; 3 c = 0 ; ( a − b ) = 0
b = 0 , c = 0 , a = b = 0 b=0,c=0,a=b=0 b = 0 , c = 0 , a = b = 0
a = b = c = 0 a=b=c=0 a = b = c = 0
So,v=0
Ker T={0}
Comments