According to Strassen's algorithm, (acbd)⋅(egfh)=(p5+p4−p2+p6p3+p4p1+p2p1+p5−p3−p7), where
p1=a(f−h)p2=(a+b)hp3=(c+d)ep4=d(g−e) p5=(a+d)(e+h)p6=(b−d)(g+h)p7=(a−c)(e+f)
For our case, a=3,b=5,c=5,d=8,e=8,f=9,g=4,h=7, hence calculating, obtain p1=6,p2=56,p3=104,p4=−32,p5=165,p6=−33,p7=−34.
Substituting these parameters into Strassen's formula, obtain (447262101).
The result is easily checked using normal matrix multiplication.
Comments