Answer to Question #111230 in Linear Algebra for Mzwandile

Question #111230
Given:
A=
4 0 0
2 2 3
1 1 1
B=
4 0 0
2 2 3
1 1 1

Find: a) –A-1+ 3BT b) B-1+ ( AT+A-1)
1
Expert's answer
2020-04-30T15:18:14-0400

a) -A-1+3BT

"B^T=\\begin{pmatrix}\n 4 & 2 & 1 \\\\\n 0 & 2 & 1 \\\\\n 0 & 3 & 1\n\\end{pmatrix}"

"A^{-1}=\\frac {1}{-4} \\begin{pmatrix}\n -1 & 0 & 0 \\\\\n 1 & 4 & -12 \\\\\n 0 & -4 & 8\n\\end{pmatrix}=\\begin{pmatrix}\n 0.25 & 0 & 0 \\\\\n -0.25 & -1 & 3 \\\\\n0 & 1 & -2\n\\end{pmatrix}"

"-A^{-1}+3B^T=\\begin{pmatrix}\n -0.25 & 0 & 0 \\\\\n 0.25 & 1 & -3 \\\\\n0 & -1 & 2\n\\end{pmatrix}+\\begin{pmatrix}\n 12 & 6 & 3 \\\\\n 0 & 6 & 3 \\\\\n0 & 9 & 3\n\\end{pmatrix}=\\begin{pmatrix}\n 11.75 & 6 & 3 \\\\\n 0.25 & 7 & 0 \\\\\n0 & 8 & 5\n\\end{pmatrix}"

Answer:

"-A^{-1}+3B^T=\\begin{pmatrix}\n 11.75 & 6 & 3 \\\\\n 0.25 & 7 & 0 \\\\\n0 & 8 & 5\n\\end{pmatrix}"


b) B-1+(AT+A-1)

"B^{-1}+(A^T+A^{-1})=\\begin{pmatrix}\n 0.25 & 0 & 0 \\\\\n -0.25 & -1 & 3 \\\\\n0 & 1 & -2\n\\end{pmatrix}+(\n\\begin{pmatrix}\n 4 & 2 & 1 \\\\\n 0 & 2 & 1 \\\\\n 0 & 3 & 1\n\\end{pmatrix}+"

"\\begin{pmatrix}\n 0.25 & 0 & 0 \\\\\n -0.25 & -1 & 3 \\\\\n0 & 1 & -2\n\\end{pmatrix})=\\begin{pmatrix}\n 4.5 & 2 & 1 \\\\\n -0.5 & 0 & 7 \\\\\n0 & 5 & -3\n\\end{pmatrix}"

Answer:

"B^{-1}+(A^T+A^{-1})=\\begin{pmatrix}\n 4.5 & 2 & 1 \\\\\n -0.5 & 0 & 7 \\\\\n0 & 5 & -3\n\\end{pmatrix}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog