Answer to Question #111653 in Linear Algebra for Prosper Mawuli

Question #111653
3. If the matrices A and B are given by A= and B =
a. Calculate 3A -2B+7I
b. 3A + 4X = B is an equation for an unknown matrix X. Find the matrix X
c. Calculate the matrix product AB
4. Solve the following set of equations by Gaussian elimination:
3x + 2y + z =2
4x + 2y + 2z =8
x – y + z = 8
1
Expert's answer
2020-04-29T18:32:35-0400

letA=[abcd]A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} B=[ijkl]B=\begin{bmatrix} i & j\\ k & l \end{bmatrix}

then

a. Calculate 3A -2B+7I

3A=[3a3b3c3d]2B=[2i2j2k2l]7I=[7007]3A2B+7I=[3a3b3c3d][2i2j2k2l]+[7007]3A=\begin{bmatrix} 3a & 3b \\ 3c & 3d \end{bmatrix}\\2B=\begin{bmatrix} 2i & 2j\\ 2k & 2l \end{bmatrix}\\7I=\begin{bmatrix} 7& 0 \\ 0& 7 \end{bmatrix}\\3A-2B+7I=\begin{bmatrix} 3a & 3b \\ 3c & 3d \end{bmatrix}-\begin{bmatrix} 2i & 2j\\ 2k & 2l \end{bmatrix}+\begin{bmatrix} 7 &0\\ 0& 7 \end{bmatrix}


3A2B+7I=[3a2i+73b2j3c2k3d2l+7]3A-2B+7I=\begin{bmatrix} 3a-2i+7 & 3b-2j \\ 3c-2k & 3d-2l+7 \end{bmatrix}


b.) 3A + 4X = B is an equation for an unknown matrix X. Find the matrix X

let X=[uvwz]X=\begin{bmatrix} u&v\\ w& z \end{bmatrix}

then


[3a3b3c3d]+[4u4v4w4z]=[ijkl]\begin{bmatrix} 3a & 3b \\ 3c & 3d \end{bmatrix}+\begin{bmatrix} 4u& 4v \\ 4w & 4z \end{bmatrix}=\begin{bmatrix} i & j \\ k & l \end{bmatrix}


forming system of linear equations

3a+4u=i3b+4v=j3c+4w=k3d+4z=l3a+4u=i\\3b+4v=j\\3c+4w=k\\3d+4z=l

solving for u, v, w and z

u=i3a4v=j3b4w=k3c4z=l3d4u=\frac{i-3a}{4}\\v=\frac{j-3b}{4}\\w=\frac{k-3c}{4}\\z=\frac{l-3d}{4}

hence

X=[i3a4j3b4k3c4l3d4]X=\begin{bmatrix} \frac{i-3a}{4}& \frac{j-3b}{4} \\ \frac{k-3c}{4}& \frac{l-3d}{4} \end{bmatrix}


c.) Calculate the matrix product AB

A=[abcd];B=[ijkl]A=\begin{bmatrix} a & b \\ c & d \end{bmatrix};B=\begin{bmatrix} i& j\\ k & l \end{bmatrix}

then

AB=[abcd][ijkl]AB=[ai+bkaj+blci+dkcj+dl]\\\\\\AB=\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} i& j\\ k & l \end{bmatrix}\\\\ AB=\begin{bmatrix} ai+bk& aj+bl\\ ci+dk &cj+dl \end{bmatrix}


4.) Solve the following set of equations by Gaussian elimination:

3x + 2y + z =2

4x + 2y + 2z =8

x – y + z = 8

extract augmented matrix

[321242281118]R1toR3[321242281118][111842283212]\begin{bmatrix} 3 & 2&1&2 \\ 4& 2&2&8\\ 1&-1&1&8 \end{bmatrix}\\R_{1} to R _{3}\begin{bmatrix} 3 & 2&1&2 \\ 4& 2&2&8\\ 1&-1&1&8 \end{bmatrix} \\\begin{bmatrix} 1 & -1&1&8 \\ 4& 2&2&8\\ 3&2&1&2 \end{bmatrix}

divide R2 by 2

[111821143212]\begin{bmatrix} 1 & -1&1&8 \\ 2& 1&1&4\\ 3&2&1&2 \end{bmatrix}

using row1 to reduce row2 and row3

[11180311205222]\begin{bmatrix} 1 & -1&1&8 \\ 0& 3&-1&-12\\ 0&5&-2&-22 \end{bmatrix}

using row2 to reduce row3 and keep row1

[10212031120016]\begin{bmatrix} 1 & 0&2&12 \\ 0& 3&-1&-12\\ 0&0&-1&-6 \end{bmatrix}

using row3 to reduce row1and keep row2

[100003060016]\begin{bmatrix} 1 & 0&0&0 \\ 0& 3&0&-6\\ 0&0&-1&-6 \end{bmatrix}


dividing R2 by 3 and R3 by -1

[100001020016]\begin{bmatrix} 1 &0&0&0 \\ 0& 1&0&-2\\ 0&0&1&6 \end{bmatrix}

hence

x=0y=2z=6x=0\\y=-2\\z=6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment