letA = [ a b c d ] A=\begin{bmatrix}
a & b \\
c & d
\end{bmatrix} A = [ a c b d ] B = [ i j k l ] B=\begin{bmatrix}
i & j\\
k & l
\end{bmatrix} B = [ i k j l ]
then
a. Calculate 3A -2B+7I
3 A = [ 3 a 3 b 3 c 3 d ] 2 B = [ 2 i 2 j 2 k 2 l ] 7 I = [ 7 0 0 7 ] 3 A − 2 B + 7 I = [ 3 a 3 b 3 c 3 d ] − [ 2 i 2 j 2 k 2 l ] + [ 7 0 0 7 ] 3A=\begin{bmatrix}
3a & 3b \\
3c & 3d
\end{bmatrix}\\2B=\begin{bmatrix}
2i & 2j\\
2k & 2l
\end{bmatrix}\\7I=\begin{bmatrix}
7& 0 \\
0& 7
\end{bmatrix}\\3A-2B+7I=\begin{bmatrix}
3a & 3b \\
3c & 3d
\end{bmatrix}-\begin{bmatrix}
2i & 2j\\
2k & 2l
\end{bmatrix}+\begin{bmatrix}
7 &0\\
0& 7
\end{bmatrix} 3 A = [ 3 a 3 c 3 b 3 d ] 2 B = [ 2 i 2 k 2 j 2 l ] 7 I = [ 7 0 0 7 ] 3 A − 2 B + 7 I = [ 3 a 3 c 3 b 3 d ] − [ 2 i 2 k 2 j 2 l ] + [ 7 0 0 7 ]
3 A − 2 B + 7 I = [ 3 a − 2 i + 7 3 b − 2 j 3 c − 2 k 3 d − 2 l + 7 ] 3A-2B+7I=\begin{bmatrix}
3a-2i+7 & 3b-2j \\
3c-2k & 3d-2l+7
\end{bmatrix} 3 A − 2 B + 7 I = [ 3 a − 2 i + 7 3 c − 2 k 3 b − 2 j 3 d − 2 l + 7 ]
b.) 3A + 4X = B is an equation for an unknown matrix X. Find the matrix X
let X = [ u v w z ] X=\begin{bmatrix}
u&v\\
w& z
\end{bmatrix} X = [ u w v z ]
then
[ 3 a 3 b 3 c 3 d ] + [ 4 u 4 v 4 w 4 z ] = [ i j k l ] \begin{bmatrix}
3a & 3b \\
3c & 3d
\end{bmatrix}+\begin{bmatrix}
4u& 4v \\
4w & 4z
\end{bmatrix}=\begin{bmatrix}
i & j \\
k & l
\end{bmatrix} [ 3 a 3 c 3 b 3 d ] + [ 4 u 4 w 4 v 4 z ] = [ i k j l ]
forming system of linear equations
3 a + 4 u = i 3 b + 4 v = j 3 c + 4 w = k 3 d + 4 z = l 3a+4u=i\\3b+4v=j\\3c+4w=k\\3d+4z=l 3 a + 4 u = i 3 b + 4 v = j 3 c + 4 w = k 3 d + 4 z = l
solving for u, v, w and z
u = i − 3 a 4 v = j − 3 b 4 w = k − 3 c 4 z = l − 3 d 4 u=\frac{i-3a}{4}\\v=\frac{j-3b}{4}\\w=\frac{k-3c}{4}\\z=\frac{l-3d}{4} u = 4 i − 3 a v = 4 j − 3 b w = 4 k − 3 c z = 4 l − 3 d
hence
X = [ i − 3 a 4 j − 3 b 4 k − 3 c 4 l − 3 d 4 ] X=\begin{bmatrix}
\frac{i-3a}{4}& \frac{j-3b}{4} \\
\frac{k-3c}{4}& \frac{l-3d}{4}
\end{bmatrix} X = [ 4 i − 3 a 4 k − 3 c 4 j − 3 b 4 l − 3 d ]
c.) Calculate the matrix product AB
A = [ a b c d ] ; B = [ i j k l ] A=\begin{bmatrix}
a & b \\
c & d
\end{bmatrix};B=\begin{bmatrix}
i& j\\
k & l
\end{bmatrix} A = [ a c b d ] ; B = [ i k j l ]
then
A B = [ a b c d ] [ i j k l ] A B = [ a i + b k a j + b l c i + d k c j + d l ] \\\\\\AB=\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}\begin{bmatrix}
i& j\\
k & l
\end{bmatrix}\\\\
AB=\begin{bmatrix}
ai+bk& aj+bl\\
ci+dk &cj+dl
\end{bmatrix} A B = [ a c b d ] [ i k j l ] A B = [ ai + bk c i + d k aj + b l c j + d l ]
4.) Solve the following set of equations by Gaussian elimination:
3x + 2y + z =2
4x + 2y + 2z =8
x – y + z = 8
extract augmented matrix
[ 3 2 1 2 4 2 2 8 1 − 1 1 8 ] R 1 t o R 3 [ 3 2 1 2 4 2 2 8 1 − 1 1 8 ] [ 1 − 1 1 8 4 2 2 8 3 2 1 2 ] \begin{bmatrix}
3 & 2&1&2 \\
4& 2&2&8\\
1&-1&1&8
\end{bmatrix}\\R_{1} to R _{3}\begin{bmatrix}
3 & 2&1&2 \\
4& 2&2&8\\
1&-1&1&8
\end{bmatrix}
\\\begin{bmatrix}
1 & -1&1&8 \\
4& 2&2&8\\
3&2&1&2
\end{bmatrix} ⎣ ⎡ 3 4 1 2 2 − 1 1 2 1 2 8 8 ⎦ ⎤ R 1 t o R 3 ⎣ ⎡ 3 4 1 2 2 − 1 1 2 1 2 8 8 ⎦ ⎤ ⎣ ⎡ 1 4 3 − 1 2 2 1 2 1 8 8 2 ⎦ ⎤
divide R2 by 2
[ 1 − 1 1 8 2 1 1 4 3 2 1 2 ] \begin{bmatrix}
1 & -1&1&8 \\
2& 1&1&4\\
3&2&1&2
\end{bmatrix} ⎣ ⎡ 1 2 3 − 1 1 2 1 1 1 8 4 2 ⎦ ⎤
using row1 to reduce row2 and row3
[ 1 − 1 1 8 0 3 − 1 − 12 0 5 − 2 − 22 ] \begin{bmatrix}
1 & -1&1&8 \\
0& 3&-1&-12\\
0&5&-2&-22
\end{bmatrix} ⎣ ⎡ 1 0 0 − 1 3 5 1 − 1 − 2 8 − 12 − 22 ⎦ ⎤
using row2 to reduce row3 and keep row1
[ 1 0 2 12 0 3 − 1 − 12 0 0 − 1 − 6 ] \begin{bmatrix}
1 & 0&2&12 \\
0& 3&-1&-12\\
0&0&-1&-6
\end{bmatrix} ⎣ ⎡ 1 0 0 0 3 0 2 − 1 − 1 12 − 12 − 6 ⎦ ⎤
using row3 to reduce row1and keep row2
[ 1 0 0 0 0 3 0 − 6 0 0 − 1 − 6 ] \begin{bmatrix}
1 & 0&0&0 \\
0& 3&0&-6\\
0&0&-1&-6
\end{bmatrix} ⎣ ⎡ 1 0 0 0 3 0 0 0 − 1 0 − 6 − 6 ⎦ ⎤
dividing R2 by 3 and R3 by -1
[ 1 0 0 0 0 1 0 − 2 0 0 1 6 ] \begin{bmatrix}
1 &0&0&0 \\
0& 1&0&-2\\
0&0&1&6
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 0 1 0 − 2 6 ⎦ ⎤
hence
x = 0 y = − 2 z = 6 x=0\\y=-2\\z=6 x = 0 y = − 2 z = 6
Comments
Leave a comment