let"A=\\begin{bmatrix}\n a & b \\\\\n c & d\n\\end{bmatrix}" "B=\\begin{bmatrix}\n i & j\\\\\n k & l\n\\end{bmatrix}"
then
a. Calculate 3A -2B+7I
"3A=\\begin{bmatrix}\n 3a & 3b \\\\\n 3c & 3d\n\\end{bmatrix}\\\\2B=\\begin{bmatrix}\n 2i & 2j\\\\\n 2k & 2l\n\\end{bmatrix}\\\\7I=\\begin{bmatrix}\n 7& 0 \\\\\n 0& 7\n\\end{bmatrix}\\\\3A-2B+7I=\\begin{bmatrix}\n 3a & 3b \\\\\n 3c & 3d\n\\end{bmatrix}-\\begin{bmatrix}\n 2i & 2j\\\\\n 2k & 2l\n\\end{bmatrix}+\\begin{bmatrix}\n 7 &0\\\\\n 0& 7\n\\end{bmatrix}"
"3A-2B+7I=\\begin{bmatrix}\n 3a-2i+7 & 3b-2j \\\\\n 3c-2k & 3d-2l+7\n\\end{bmatrix}"
b.) 3A + 4X = B is an equation for an unknown matrix X. Find the matrix X
let "X=\\begin{bmatrix}\n u&v\\\\\n w& z\n\\end{bmatrix}"
then
"\\begin{bmatrix}\n 3a & 3b \\\\\n 3c & 3d\n\\end{bmatrix}+\\begin{bmatrix}\n 4u& 4v \\\\\n 4w & 4z\n\\end{bmatrix}=\\begin{bmatrix}\n i & j \\\\\n k & l\n\\end{bmatrix}"
forming system of linear equations
"3a+4u=i\\\\3b+4v=j\\\\3c+4w=k\\\\3d+4z=l"
solving for u, v, w and z
"u=\\frac{i-3a}{4}\\\\v=\\frac{j-3b}{4}\\\\w=\\frac{k-3c}{4}\\\\z=\\frac{l-3d}{4}"
hence
"X=\\begin{bmatrix}\n \\frac{i-3a}{4}& \\frac{j-3b}{4} \\\\\n \\frac{k-3c}{4}& \\frac{l-3d}{4}\n\\end{bmatrix}"
c.) Calculate the matrix product AB
"A=\\begin{bmatrix}\n a & b \\\\\n c & d\n\\end{bmatrix};B=\\begin{bmatrix}\n i& j\\\\\n k & l\n\\end{bmatrix}"
then
"\\\\\\\\\\\\AB=\\begin{bmatrix}\n a & b \\\\\n c & d\n\\end{bmatrix}\\begin{bmatrix}\n i& j\\\\\n k & l\n\\end{bmatrix}\\\\\\\\\nAB=\\begin{bmatrix}\n ai+bk& aj+bl\\\\\n ci+dk &cj+dl\n\\end{bmatrix}"
4.) Solve the following set of equations by Gaussian elimination:
3x + 2y + z =2
4x + 2y + 2z =8
x – y + z = 8
extract augmented matrix
"\\begin{bmatrix}\n 3 & 2&1&2 \\\\\n 4& 2&2&8\\\\\n1&-1&1&8\n\\end{bmatrix}\\\\R_{1} to R _{3}\\begin{bmatrix}\n 3 & 2&1&2 \\\\\n 4& 2&2&8\\\\\n1&-1&1&8\n\\end{bmatrix}\n\\\\\\begin{bmatrix}\n 1 & -1&1&8 \\\\\n 4& 2&2&8\\\\\n3&2&1&2\n\\end{bmatrix}"
divide R2 by 2
"\\begin{bmatrix}\n 1 & -1&1&8 \\\\\n 2& 1&1&4\\\\\n3&2&1&2\n\\end{bmatrix}"
using row1 to reduce row2 and row3
"\\begin{bmatrix}\n 1 & -1&1&8 \\\\\n 0& 3&-1&-12\\\\\n0&5&-2&-22\n\\end{bmatrix}"
using row2 to reduce row3 and keep row1
"\\begin{bmatrix}\n 1 & 0&2&12 \\\\\n 0& 3&-1&-12\\\\\n0&0&-1&-6\n\\end{bmatrix}"
using row3 to reduce row1and keep row2
"\\begin{bmatrix}\n 1 & 0&0&0 \\\\\n 0& 3&0&-6\\\\\n0&0&-1&-6\n\\end{bmatrix}"
dividing R2 by 3 and R3 by -1
"\\begin{bmatrix}\n 1 &0&0&0 \\\\\n 0& 1&0&-2\\\\\n0&0&1&6\n\\end{bmatrix}"
hence
"x=0\\\\y=-2\\\\z=6"
Comments
Leave a comment