To show, that T is a linear operator let's check the following property:
T ( λ 1 v 1 + λ 2 v 2 ) = λ 1 T ( v 1 ) + λ 2 T ( v 2 ) T(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1T(v_1) + \lambda_2 T(v_2) T ( λ 1 v 1 + λ 2 v 2 ) = λ 1 T ( v 1 ) + λ 2 T ( v 2 ) , where v 1 = ( x 1 , y 1 , z 1 ) , v 2 = ( x 2 , y 2 , z 2 ) v_1 = (x_1, y_1, z_1), v_2 = (x_2, y_2, z_2) v 1 = ( x 1 , y 1 , z 1 ) , v 2 = ( x 2 , y 2 , z 2 ) . Indeed:
T ( λ 1 v 1 + λ 2 v 2 ) = T ( ( λ 1 x 1 , λ 1 y 1 , λ 1 z 1 ) + ( λ 2 x 2 , λ 2 y 2 , λ 2 z 2 ) ) = T(\lambda_1 v_1 + \lambda_2 v_2) = T((\lambda_1 x_1, \lambda_1 y_1, \lambda_1 z_1)+ (\lambda_2 x_2, \lambda_2 y_2, \lambda_2 z_2))= T ( λ 1 v 1 + λ 2 v 2 ) = T (( λ 1 x 1 , λ 1 y 1 , λ 1 z 1 ) + ( λ 2 x 2 , λ 2 y 2 , λ 2 z 2 )) =
= T ( λ 1 x 1 + λ 2 x 2 , λ 1 y 1 + λ 2 y 2 , λ 1 z 1 + λ 2 z 2 ) = T(\lambda_1 x_1 + \lambda_2 x_2, \lambda_1 y_1 + \lambda_2 y_2, \lambda_1 z_1 + \lambda_2z_2) = T ( λ 1 x 1 + λ 2 x 2 , λ 1 y 1 + λ 2 y 2 , λ 1 z 1 + λ 2 z 2 ) = ( λ 1 ( x 1 + y 1 ) + λ 2 ( x 2 + y 2 ) , λ 1 ( y 1 + z 1 ) + λ 2 ( y 2 + z 2 ) , λ 1 ( x 1 − z 1 ) + λ 2 ( x 2 − z 2 ) , λ 1 ( 2 x 1 + y 1 − z 1 ) + λ 2 ( 2 x 2 + y 2 − z 2 ) ) = = (\lambda_1(x_1 + y_1) + \lambda_2(x_2 + y_2), \lambda_1(y_1 + z_1) + \lambda_2(y_2 + z_2), \lambda_1(x_1 -z_1) + \lambda_2(x_2 - z_2), \lambda_1(2x_1 + y_1 - z_1) + \lambda_2(2x_2 + y_2 - z_2)) = = ( λ 1 ( x 1 + y 1 ) + λ 2 ( x 2 + y 2 ) , λ 1 ( y 1 + z 1 ) + λ 2 ( y 2 + z 2 ) , λ 1 ( x 1 − z 1 ) + λ 2 ( x 2 − z 2 ) , λ 1 ( 2 x 1 + y 1 − z 1 ) + λ 2 ( 2 x 2 + y 2 − z 2 )) =
= λ 1 ( x 1 + y 1 , y 1 + z 1 , x 1 − z 1 , 2 x 1 + y 1 − z 1 ) + λ 2 ( ( x 2 + y 2 , y 2 + z 2 , x 2 − z 2 , 2 x 2 + y 2 − z 2 ) = λ 1 T ( v 1 ) + λ 2 T ( v 2 ) = \lambda_1(x_1 + y_1, y_1 + z_1, x_1 - z_1, 2x_1 + y_1 - z_1) + \lambda_2((x_2 + y_2, y_2 + z_2, x_2 - z_2, 2x_2 + y_2 - z_2) = \lambda_1 T(v_1) + \lambda_2T(v_2) = λ 1 ( x 1 + y 1 , y 1 + z 1 , x 1 − z 1 , 2 x 1 + y 1 − z 1 ) + λ 2 (( x 2 + y 2 , y 2 + z 2 , x 2 − z 2 , 2 x 2 + y 2 − z 2 ) = λ 1 T ( v 1 ) + λ 2 T ( v 2 )
Let's now find the kernal and range of T.
K e r ( T ) = v ∈ R 3 ∣ T ( v ) = 0 Ker(T) = v \in R^3 | T(v) = 0 Ker ( T ) = v ∈ R 3 ∣ T ( v ) = 0 , so:
T ( v ) = T ( x , y , z ) = ( x + y , y + z , x − z , 2 x + y − z ) = 0. T(v) = T(x, y, z) = (x+y, y+z, x-z, 2x+y-z) = 0. T ( v ) = T ( x , y , z ) = ( x + y , y + z , x − z , 2 x + y − z ) = 0. This means, that:
{ x + y = 0 y + z = 0 x − z = 0 2 x + y − z = 0 \begin{cases}
x+y = 0 \\
y+z = 0 \\
x-z = 0\\
2x+y-z = 0
\end{cases} ⎩ ⎨ ⎧ x + y = 0 y + z = 0 x − z = 0 2 x + y − z = 0 Thus { x + y = 0 z = x \begin{cases}
x+y=0\\
z= x \\
\end{cases} { x + y = 0 z = x . Hence, K e r ( T ) = L i n ( 1 , − 1 , 1 ) , d i m ( K e r ( T ) ) = 1. Ker (T) = Lin (1,-1,1), dim(Ker (T)) = 1. Ker ( T ) = L in ( 1 , − 1 , 1 ) , d im ( Ker ( T )) = 1.
Now let's do the same for the range:
T ( v ) = T ( x , y , z ) = ( x + y , y + z , x − z , 2 x + y − z ) = T(v) = T(x, y, z) = (x+y, y+z, x-z, 2x+y-z) = T ( v ) = T ( x , y , z ) = ( x + y , y + z , x − z , 2 x + y − z ) =
= x ( 1 , 0 , 1 , 2 ) + y ( 1 , 1 , 0 , 1 ) + z ( 0 , 1 , − 1 , − 1 ) . = x(1, 0, 1, 2) + y(1,1,0,1)+z(0,1,-1,-1). = x ( 1 , 0 , 1 , 2 ) + y ( 1 , 1 , 0 , 1 ) + z ( 0 , 1 , − 1 , − 1 ) . But, since ( 0 , 1 , − 1 , − 1 ) = − ( 1 , 0 , 1 , 2 ) + ( 1 , 1 , 0 , 1 ) , (0,1,-1,-1) = -(1,0,1,2) + (1,1,0,1), ( 0 , 1 , − 1 , − 1 ) = − ( 1 , 0 , 1 , 2 ) + ( 1 , 1 , 0 , 1 ) , we obtain that: T ( x , y , z ) = ( x − z ) ( 1 , 0 , 1 , 2 ) + ( y + z ) ( 1 , 1 , 0 , 1 ) , T(x,y,z) = (x-z)(1,0,1,2) + (y+z)(1,1,0,1), T ( x , y , z ) = ( x − z ) ( 1 , 0 , 1 , 2 ) + ( y + z ) ( 1 , 1 , 0 , 1 ) , and:
R a n g e ( T ) = L i n ( ( 1 , 0 , 1 , 2 ) , ( 1 , 1 , 0 , 1 ) ) . Range(T) = Lin((1,0,1,2),(1,1,0,1)). R an g e ( T ) = L in (( 1 , 0 , 1 , 2 ) , ( 1 , 1 , 0 , 1 )) .
Comments