To show, that T is a linear operator let's check the following property:
"T(\\lambda_1 v_1 + \\lambda_2 v_2) = \\lambda_1T(v_1) + \\lambda_2 T(v_2)", where "v_1 = (x_1, y_1, z_1), v_2 = (x_2, y_2, z_2)". Indeed:
"T(\\lambda_1 v_1 + \\lambda_2 v_2) = T((\\lambda_1 x_1, \\lambda_1 y_1, \\lambda_1 z_1)+ (\\lambda_2 x_2, \\lambda_2 y_2, \\lambda_2 z_2))="
"= T(\\lambda_1 x_1 + \\lambda_2 x_2, \\lambda_1 y_1 + \\lambda_2 y_2, \\lambda_1 z_1 + \\lambda_2z_2)" "= (\\lambda_1(x_1 + y_1) + \\lambda_2(x_2 + y_2), \\lambda_1(y_1 + z_1) + \\lambda_2(y_2 + z_2), \\lambda_1(x_1 -z_1) + \\lambda_2(x_2 - z_2), \\lambda_1(2x_1 + y_1 - z_1) + \\lambda_2(2x_2 + y_2 - z_2)) ="
"= \\lambda_1(x_1 + y_1, y_1 + z_1, x_1 - z_1, 2x_1 + y_1 - z_1) + \\lambda_2((x_2 + y_2, y_2 + z_2, x_2 - z_2, 2x_2 + y_2 - z_2) = \\lambda_1 T(v_1) + \\lambda_2T(v_2)"
Let's now find the kernal and range of T.
"Ker(T) = v \\in R^3 | T(v) = 0" , so:
"T(v) = T(x, y, z) = (x+y, y+z, x-z, 2x+y-z) = 0." This means, that:
"\\begin{cases} \nx+y = 0 \\\\\ny+z = 0 \\\\\nx-z = 0\\\\\n2x+y-z = 0\n\\end{cases}" Thus "\\begin{cases}\nx+y=0\\\\\nz= x \\\\\n\n\\end{cases}" . Hence, "Ker (T) = Lin (1,-1,1), dim(Ker (T)) = 1."
Now let's do the same for the range:
"T(v) = T(x, y, z) = (x+y, y+z, x-z, 2x+y-z) ="
"= x(1, 0, 1, 2) + y(1,1,0,1)+z(0,1,-1,-1)." But, since "(0,1,-1,-1) = -(1,0,1,2) + (1,1,0,1)," we obtain that: "T(x,y,z) = (x-z)(1,0,1,2) + (y+z)(1,1,0,1)," and:
"Range(T) = Lin((1,0,1,2),(1,1,0,1))."
Comments
Leave a comment