Question #111480
Define T:R^3 -R^3 by
T(x1,x2,x3) = (x1+x2,x2+x3,x1-x3,2x1+x2-x3)
Check that T is a linear operator . Find the kernal and range of T. Find the dimension of the kernal.
1
Expert's answer
2020-04-27T18:31:45-0400

To show, that T is a linear operator let's check the following property:

T(λ1v1+λ2v2)=λ1T(v1)+λ2T(v2)T(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1T(v_1) + \lambda_2 T(v_2), where v1=(x1,y1,z1),v2=(x2,y2,z2)v_1 = (x_1, y_1, z_1), v_2 = (x_2, y_2, z_2). Indeed:

T(λ1v1+λ2v2)=T((λ1x1,λ1y1,λ1z1)+(λ2x2,λ2y2,λ2z2))=T(\lambda_1 v_1 + \lambda_2 v_2) = T((\lambda_1 x_1, \lambda_1 y_1, \lambda_1 z_1)+ (\lambda_2 x_2, \lambda_2 y_2, \lambda_2 z_2))=

=T(λ1x1+λ2x2,λ1y1+λ2y2,λ1z1+λ2z2)= T(\lambda_1 x_1 + \lambda_2 x_2, \lambda_1 y_1 + \lambda_2 y_2, \lambda_1 z_1 + \lambda_2z_2) =(λ1(x1+y1)+λ2(x2+y2),λ1(y1+z1)+λ2(y2+z2),λ1(x1z1)+λ2(x2z2),λ1(2x1+y1z1)+λ2(2x2+y2z2))== (\lambda_1(x_1 + y_1) + \lambda_2(x_2 + y_2), \lambda_1(y_1 + z_1) + \lambda_2(y_2 + z_2), \lambda_1(x_1 -z_1) + \lambda_2(x_2 - z_2), \lambda_1(2x_1 + y_1 - z_1) + \lambda_2(2x_2 + y_2 - z_2)) =

=λ1(x1+y1,y1+z1,x1z1,2x1+y1z1)+λ2((x2+y2,y2+z2,x2z2,2x2+y2z2)=λ1T(v1)+λ2T(v2)= \lambda_1(x_1 + y_1, y_1 + z_1, x_1 - z_1, 2x_1 + y_1 - z_1) + \lambda_2((x_2 + y_2, y_2 + z_2, x_2 - z_2, 2x_2 + y_2 - z_2) = \lambda_1 T(v_1) + \lambda_2T(v_2)

Let's now find the kernal and range of T.

Ker(T)=vR3T(v)=0Ker(T) = v \in R^3 | T(v) = 0 , so:

T(v)=T(x,y,z)=(x+y,y+z,xz,2x+yz)=0.T(v) = T(x, y, z) = (x+y, y+z, x-z, 2x+y-z) = 0. This means, that:

{x+y=0y+z=0xz=02x+yz=0\begin{cases} x+y = 0 \\ y+z = 0 \\ x-z = 0\\ 2x+y-z = 0 \end{cases} Thus {x+y=0z=x\begin{cases} x+y=0\\ z= x \\ \end{cases} . Hence, Ker(T)=Lin(1,1,1),dim(Ker(T))=1.Ker (T) = Lin (1,-1,1), dim(Ker (T)) = 1.


Now let's do the same for the range:

T(v)=T(x,y,z)=(x+y,y+z,xz,2x+yz)=T(v) = T(x, y, z) = (x+y, y+z, x-z, 2x+y-z) =

=x(1,0,1,2)+y(1,1,0,1)+z(0,1,1,1).= x(1, 0, 1, 2) + y(1,1,0,1)+z(0,1,-1,-1). But, since (0,1,1,1)=(1,0,1,2)+(1,1,0,1),(0,1,-1,-1) = -(1,0,1,2) + (1,1,0,1), we obtain that: T(x,y,z)=(xz)(1,0,1,2)+(y+z)(1,1,0,1),T(x,y,z) = (x-z)(1,0,1,2) + (y+z)(1,1,0,1), and:

Range(T)=Lin((1,0,1,2),(1,1,0,1)).Range(T) = Lin((1,0,1,2),(1,1,0,1)).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS