10.1
Let θ=10π=180 then 5θ=2π
cos3θ=sin2θcos540=sin360=sin(900−540)4cos3θ−3cosθ=2sinθcosθ4cos2θ−3=2sinθ4(1−sin2θ)−3=2sinθ4sin2θ+2sinθ−1=0sinθ=45−1cos2θ=cos5π=1−2sin2θ=45+1sin5π=1−cos2θ=1−(45+1)2=410−25sin52π=2sin5πcos5π=410−2525+1==410+25
10.2
z=cosθ+isinθzn=cosnθ+isinnθz−n=cosnθ+isinnθ1=cosnθ−isinnθn∈N
(a)
zn+z−n=2cosnθzn−z−n=2isinnθ
(b)
z=cosθ+isinθ(z+1)n=(cosθ+isinθ+1)n==(2cos22θ+i2sin2θcos2θ)n==2ncosn2θ(cos2θ+isin2θ)n==2ncosn2θ(cos2nθ+isin2nθ)==2ncosn2θz2n2ncosn2θz2n=2ncosnθ
(z−1)n=(cosθ+isinθ−1)n==(2sin22θ+i2sin2θcos2θ)n==2nsinn2θ(sin2θ+icos2θ)n==2nsinn2θ(−i(cos2θ+isin2θ))n==(2i)nsinn2θ(cos2nθ+isin2nθ)==(2i)nsinn2θz2n(2i)nsinn2θz2n=(2i)nsinnθ
(c)
sinθ=2iz−z−1sin7θ=2i(z−z−1)7==2i1(z7−7z6z−1+21z5z−2−35z4z−3++35z3z−4−21z2z−5+7zz−6−z−7)==2i1(2isin7θ−7⋅(2i)sin5θ+21⋅(2i)sin3θ−−35(2i)sinθ)==sin7θ−7sin5θ+21sin3θ−35sinθ
(d)
cos3θ=2z3+z−3=2(z+z−1)(z2−zz−1+z−2)==22cosθ(2cos2θ−1)=cosθ(2cos2θ−1)sin4θ=2iz4−z−4=2i(z2+z−2)(z2−z−2)=2i2cos2θ2isin2θ==2cos2θsin2θ
(e)
cos3θ=2z3+z−3=2(z+z−1)(z2−zz−1+z−2)==22cosθ(2cos2θ−1)=cosθ(4cos2θ−3)==4cos3θ−3cosθ4x=cos3θ+3cosθ4x=4cos3θ−3cosθ+3cosθx=cos3θ
sin3θ=2iz3−z−3=2i(z−z−1)(z2+zz−1+z−2)==2i2isinθ(2cos2θ+1)=sinθ(3−4sin2θ)==3sinθ−4sin3θ4y=3sinθ−sin3θ4y=3sinθ−3sinθ+4sin3θy=sin3θ
Comments