Question #113414
QUESTION 10

10.1 Use 9.2 to evaluate sin π/5 , sin 2π/5 and cos π/5 .

10.2 Let z = cos θ + i sin θ.

Then zn = cos(nθ) + i sin(nθ) for all n ∈ N (by de Moivre) and z−n = cos(nθ) − i sin(nθ).

(a) Show that 2 cos(nθ) = zn + z−n and 2i sin(nθ) = zn − z−n.
(2)

(b) Show that 2n cosn θ = (z + 1 )n and (2i)n sinn θ = (z − 1 )n.
(2)



(c) Use (b) to express sin7 θ in terms of multiple angles.
(6)

(d) Express cos3 θ sin4 θ in terms of multiple angles.
(6)

(e) Eliminate θ from the equations 4x = cos(3θ) + 3 cos θ; 4y = 3 sin θ − sin(3θ).
(5)

[30]
1
Expert's answer
2020-05-05T20:47:50-0400

10.1

Let θ=π10=180\theta=\frac{\pi}{10}=18^0 then 5θ=π25\theta=\frac{\pi}{2}

cos3θ=sin2θcos540=sin360=sin(900540)4cos3θ3cosθ=2sinθcosθ4cos2θ3=2sinθ4(1sin2θ)3=2sinθ4sin2θ+2sinθ1=0sinθ=514cos2θ=cosπ5=12sin2θ=5+14sinπ5=1cos2θ=1(5+14)2=10254sin2π5=2sinπ5cosπ5=102545+12==10+254\cos3\theta=\sin2\theta\\ \cos54^0=\sin36^0=\sin(90^0-54^0)\\ 4\cos^3\theta-3\cos\theta=2\sin\theta\cos\theta\\ 4\cos^2\theta-3=2\sin\theta\\ 4(1-\sin^2\theta)-3=2\sin\theta\\ 4\sin^2\theta+2\sin\theta-1=0\\ \sin\theta=\frac{\sqrt5-1}{4}\\ \cos2\theta=\cos\frac{\pi}{5}=1-2\sin^2\theta=\frac{\sqrt5+1}{4}\\ \sin\frac{\pi}{5}=\sqrt{1-\cos^2\theta}=\sqrt{1-(\frac{\sqrt5+1}{4})^2}=\frac{\sqrt{10-2\sqrt5}}{4}\\ \sin\frac{2\pi}{5}=2\sin\frac{\pi}{5}\cos\frac{\pi}{5}=\frac{\sqrt{10-2\sqrt5}}{4}\frac{\sqrt5+1}{2}=\\ =\frac{\sqrt{10+2\sqrt5}}{4}

10.2

z=cosθ+isinθzn=cosnθ+isinnθzn=1cosnθ+isinnθ=cosnθisinnθnNz=\cos\theta+i\sin\theta\\ z^n=\cos n\theta+i\sin n\theta\\ z^{-n}=\frac{1}{\cos n\theta+i\sin n\theta}=\cos n\theta-i\sin n\theta\\ n\in N

(a)

zn+zn=2cosnθznzn=2isinnθz^n+z^{-n}=2\cos n\theta\\ z^n-z^{-n}=2i\sin n\theta

(b)

z=cosθ+isinθ(z+1)n=(cosθ+isinθ+1)n==(2cos2θ2+i2sinθ2cosθ2)n==2ncosnθ2(cosθ2+isinθ2)n==2ncosnθ2(cosnθ2+isinnθ2)==2ncosnθ2zn22ncosnθ2zn2=2ncosnθz=\cos\theta+i\sin\theta\\ (z+1)^n=(\cos\theta+i\sin\theta+1)^n=\\ =(2\cos^2\frac{\theta}{2}+i2\sin\frac{\theta}{2}\cos\frac{\theta}{2})^n=\\ =2^n\cos^n\frac{\theta}{2}(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2})^n=\\ =2^n\cos^n\frac{\theta}{2}(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2})=\\ =2^n\cos^n\frac{\theta}{2}z^{\frac{n}{2}}\\ 2^n\cos^n\frac{\theta}{2}z^{\frac{n}{2}}=2^n\cos^ n\theta\\


(z1)n=(cosθ+isinθ1)n==(2sin2θ2+i2sinθ2cosθ2)n==2nsinnθ2(sinθ2+icosθ2)n==2nsinnθ2(i(cosθ2+isinθ2))n==(2i)nsinnθ2(cosnθ2+isinnθ2)==(2i)nsinnθ2zn2(2i)nsinnθ2zn2=(2i)nsinnθ(z-1)^n=(\cos\theta+i\sin\theta-1)^n=\\ =(2\sin^2\frac{\theta}{2}+i2\sin\frac{\theta}{2}\cos\frac{\theta}{2})^n=\\ =2^n\sin^n\frac{\theta}{2}(\sin\frac{\theta}{2}+i\cos\frac{\theta}{2})^n=\\ =2^n\sin^n\frac{\theta}{2}(-i(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}))^n=\\ =(2i)^n\sin^n\frac{\theta}{2}(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2})=\\ =(2i)^n\sin^n\frac{\theta}{2}z^{\frac{n}{2}}\\ (2i)^n\sin^n\frac{\theta}{2}z^{\frac{n}{2}}=(2i)^n\sin^ n\theta\\

(c)

sinθ=zz12isin7θ=(zz1)72i==12i(z77z6z1+21z5z235z4z3++35z3z421z2z5+7zz6z7)==12i(2isin7θ7(2i)sin5θ+21(2i)sin3θ35(2i)sinθ)==sin7θ7sin5θ+21sin3θ35sinθ\sin\theta=\frac{z-z^{-1}}{2i}\\ \sin^7\theta=\frac{(z-z^{-1})^7}{2i}=\\ =\frac{1}{2i}(z^7-7z^6z^{-1}+21z^5z^{-2}-35z^4z^{-3}+\\+35z^3z^{-4} -21z^2z^{-5}+7zz^{-6}-z^{-7})=\\ =\frac{1}{2i}(2i\sin7\theta-7\cdot(2i)\sin5\theta+21\cdot(2i)\sin3\theta-\\ -35(2i)\sin\theta)=\\ =sin7\theta-7\sin5\theta+21\sin3\theta-35\sin\theta


(d)

cos3θ=z3+z32=(z+z1)(z2zz1+z2)2==2cosθ(2cos2θ1)2=cosθ(2cos2θ1)sin4θ=z4z42i=(z2+z2)(z2z2)2i=2cos2θ2isin2θ2i==2cos2θsin2θ\cos3\theta=\frac{z^3+z^{-3}}{2}=\frac{(z+z^{-1})(z^2-zz^{-1}+z^{-2})}{2}=\\ =\frac{2\cos\theta(2\cos2\theta-1)}{2}=\cos\theta(2\cos2\theta-1)\\ \sin4\theta=\frac{z^4-z^{-4}}{2i}=\frac{(z^2+z^{-2})(z^2-z^{-2})}{2i}=\frac{2\cos2\theta2i\sin2\theta}{2i}=\\ =2\cos2\theta\sin2\theta

(e)

cos3θ=z3+z32=(z+z1)(z2zz1+z2)2==2cosθ(2cos2θ1)2=cosθ(4cos2θ3)==4cos3θ3cosθ4x=cos3θ+3cosθ4x=4cos3θ3cosθ+3cosθx=cos3θ\cos3\theta=\frac{z^3+z^{-3}}{2}=\frac{(z+z^{-1})(z^2-zz^{-1}+z^{-2})}{2}=\\ =\frac{2\cos\theta(2\cos2\theta-1)}{2}=\cos\theta(4\cos^2\theta-3)=\\ =4\cos^3\theta-3\cos\theta\\ 4x=\cos3\theta+3\cos\theta\\ 4x=4\cos^3\theta-3\cos\theta+3\cos\theta\\ x=\cos^3\theta


sin3θ=z3z32i=(zz1)(z2+zz1+z2)2i==2isinθ(2cos2θ+1)2i=sinθ(34sin2θ)==3sinθ4sin3θ4y=3sinθsin3θ4y=3sinθ3sinθ+4sin3θy=sin3θ\sin3\theta=\frac{z^3-z^{-3}}{2i}=\frac{(z-z^{-1})(z^2+zz^{-1}+z^{-2})}{2i}=\\ =\frac{2i\sin\theta(2\cos2\theta+1)}{2i}=\sin\theta(3-4\sin^2\theta)=\\ =3\sin\theta-4\sin^3\theta\\ 4y=3\sin\theta-\sin3\theta\\ 4y=3\sin\theta-3\sin\theta+4\sin^3\theta\\ y=\sin^3\theta



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS