The determinant of a function is a function from nxn square matrix to a scalar such that it is defined as:
let a matrix P be defined as P= (aij ) where  i and j lie between 1 and n.
∑ 1 < j < n \sum_{{1<j<n}} ∑ 1 < j < n    (-1)i+j   a1,j   det A1,j  where A1,j  is a sub-matrix of P.
properties of determinant:
the determinant does not change if rows are changed into columns or columns are changed into rows.( reflection property) if all the elements of a row or a column are zero, then determinant of the matrix is zero (zero property) the interchanging of any two rows of a matrix changes the sign.( switching property) if the row or a column are multiplied by a scale constant then determinant gets multiplied by same scalar constant.( scalar multiple property) if all the elements of a row/column are same, then determinant is zero.(proportionality) 
determinant of 3x3 matrix:
∣ 1 2 3 4 1 2 2 1 3 ∣ \begin{vmatrix}
   1 & 2 & 3 \\
   4 & 1 & 2 \\
   2 & 1 & 3 \\
\end{vmatrix} ∣ ∣  1 4 2  2 1 1  3 2 3  ∣ ∣    = 1∣ 1 2 1 3 ∣ \begin{vmatrix}
   1 & 2 \\
   1 & 3
\end{vmatrix} ∣ ∣  1 1  2 3  ∣ ∣    -2∣ 4 2 2 3 ∣ \begin{vmatrix}
   4 & 2 \\
   2 & 3
\end{vmatrix} ∣ ∣  4 2  2 3  ∣ ∣    +3∣ 4 1 2 1 ∣ \begin{vmatrix}
   4 & 1 \\
   2 & 1
\end{vmatrix} ∣ ∣  4 2  1 1  ∣ ∣    = 1-2(8)+3(2) = 1-16+6 = -9
                             
Comments