"\\begin{vmatrix}\n 3 & -4 & -1 \\\\\n 3 & 2 & -1 \\\\\n 1 & -1 &1\n\\end{vmatrix} =6+4+3+2+12-3=24"
"\\begin{vmatrix}\n 5 & -4 & -1 \\\\\n 0 & 2 & -1 \\\\\n 1 & -1 &1\n\\end{vmatrix} =10+4+0+2+0-5=11"
"\\begin{vmatrix}\n 3 & 5 & -1 \\\\\n 3 & 0 & -1 \\\\\n 1 & 1 &1\n\\end{vmatrix} =0-3-5+0-15+3=-20"
"\\begin{vmatrix}\n 3 & -4 & 5 \\\\\n 3 & 2 & 0 \\\\\n 1 & -1 &1\n\\end{vmatrix} =6-15+0-10+12-0=-7"
Hence, "x=\\frac{11}{24}, y=-\\frac{20}{24}, z=-\\frac{7}{24}"
Comments
Leave a comment