∣3−4−132−11−11∣=6+4+3+2+12−3=24\begin{vmatrix} 3 & -4 & -1 \\ 3 & 2 & -1 \\ 1 & -1 &1 \end{vmatrix} =6+4+3+2+12-3=24∣∣331−42−1−1−11∣∣=6+4+3+2+12−3=24
∣5−4−102−11−11∣=10+4+0+2+0−5=11\begin{vmatrix} 5 & -4 & -1 \\ 0 & 2 & -1 \\ 1 & -1 &1 \end{vmatrix} =10+4+0+2+0-5=11∣∣501−42−1−1−11∣∣=10+4+0+2+0−5=11
∣35−130−1111∣=0−3−5+0−15+3=−20\begin{vmatrix} 3 & 5 & -1 \\ 3 & 0 & -1 \\ 1 & 1 &1 \end{vmatrix} =0-3-5+0-15+3=-20∣∣331501−1−11∣∣=0−3−5+0−15+3=−20
∣3−453201−11∣=6−15+0−10+12−0=−7\begin{vmatrix} 3 & -4 & 5 \\ 3 & 2 & 0 \\ 1 & -1 &1 \end{vmatrix} =6-15+0-10+12-0=-7∣∣331−42−1501∣∣=6−15+0−10+12−0=−7
Hence, x=1124,y=−2024,z=−724x=\frac{11}{24}, y=-\frac{20}{24}, z=-\frac{7}{24}x=2411,y=−2420,z=−247
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments