Given: A= 004322111− B= 004322111− Find: a) –A^{-1}+ 3B^T b) B^{-1}+ ( A^T+A^{-1})
"A= B =\n \\left[ {\\begin{array}{cc}\n 0 & 0 & 4 \\\\\n 3 & 2 & 2 \\\\\n1 & 1 & 1\n \\end{array} } \\right]" .
By expanding along 1st row, "|A|=|B| = 4(3-2) = 4".
Now, "adj(A)=adj(B) = \n \\left[ {\\begin{array}{cc}\n 0 & -1 & 1 \\\\\n 4 & -4 & 0 \\\\\n-8 & 12 & 0 \\\\\n \\end{array} } \\right]^T = \n\\left[ {\\begin{array}{cc}\n 0 & 4& -8 \\\\\n -1& -4 & 12 \\\\\n1 & 0& 0 \\\\\n \\end{array} } \\right]" .
So,
"A^{-1} =B^{-1} = \\frac{1}{|A|} adj(A) = \\left[ {\\begin{array}{cc}\n 0 & 1 & -2\\\\\n -1\/4 & -1& 3\\\\\n1\/4 & 0& 0 \\\\\n \\end{array} } \\right]" .
a)
"-A^{-1} + 3 B^T = - \\left[ {\\begin{array}{cc}\n 0 & 1 & -2\\\\\n -1\/4 & -1& 3\\\\\n1\/4 & 0& 0 \\\\\n \\end{array} } \\right]+ 3 \\left[ {\\begin{array}{cc}\n 0 & 0 & 4 \\\\\n 3 & 2 & 2 \\\\\n1 & 1 & 1\n \\end{array} } \\right]^T \n\\\\\n= \\left[ {\\begin{array}{cc}\n 0 & -1 & 2\\\\\n 1\/4 & 1& -3\\\\\n-1\/4 & 0& 0 \\\\\n \\end{array} } \\right] + \\left[ {\\begin{array}{cc}\n 0 & 9& 3\\\\\n 0& 6& 3\\\\\n12 & 6 & 3\n \\end{array} } \\right] = \\left[ {\\begin{array}{cc}\n 0 & 8& 5\\\\\n 1\/4& 7& 0\\\\\n47\/4& 6 & 3\n \\end{array} } \\right]"
b)
"A^T + A^{-1} = \\left[ {\\begin{array}{cc}\n 0 & 0& 4\\\\\n 3& 2& 2\\\\\n1 & 1 & 1\n \\end{array} } \\right] + \\left[ {\\begin{array}{cc}\n 0 & 1 & -2\\\\\n -1\/4 & -1& 3\\\\\n1\/4 & 0& 0 \\\\\n \\end{array} } \\right] = \\left[ {\\begin{array}{cc}\n 0 & 1 & 2\\\\\n 11\/4 & 1& 5\\\\\n5\/4 & 1& 1\\\\\n \\end{array} } \\right]"
Comments
Leave a comment