Answer to Question #114086 in Linear Algebra for Cross

Question #114086

Given: A= 004322111− B= 004322111− Find: a) –A^{-1}+ 3B^T b) B^{-1}+ ( A^T+A^{-1})


1
Expert's answer
2020-05-07T15:47:59-0400

"A= B =\n \\left[ {\\begin{array}{cc}\n 0 & 0 & 4 \\\\\n 3 & 2 & 2 \\\\\n1 & 1 & 1\n \\end{array} } \\right]" .

By expanding along 1st row, "|A|=|B| = 4(3-2) = 4".

Now, "adj(A)=adj(B) = \n \\left[ {\\begin{array}{cc}\n 0 & -1 & 1 \\\\\n 4 & -4 & 0 \\\\\n-8 & 12 & 0 \\\\\n \\end{array} } \\right]^T = \n\\left[ {\\begin{array}{cc}\n 0 & 4& -8 \\\\\n -1& -4 & 12 \\\\\n1 & 0& 0 \\\\\n \\end{array} } \\right]" .

So,

"A^{-1} =B^{-1} = \\frac{1}{|A|} adj(A) = \\left[ {\\begin{array}{cc}\n 0 & 1 & -2\\\\\n -1\/4 & -1& 3\\\\\n1\/4 & 0& 0 \\\\\n \\end{array} } \\right]" .

a)

"-A^{-1} + 3 B^T = - \\left[ {\\begin{array}{cc}\n 0 & 1 & -2\\\\\n -1\/4 & -1& 3\\\\\n1\/4 & 0& 0 \\\\\n \\end{array} } \\right]+ 3 \\left[ {\\begin{array}{cc}\n 0 & 0 & 4 \\\\\n 3 & 2 & 2 \\\\\n1 & 1 & 1\n \\end{array} } \\right]^T \n\\\\\n= \\left[ {\\begin{array}{cc}\n 0 & -1 & 2\\\\\n 1\/4 & 1& -3\\\\\n-1\/4 & 0& 0 \\\\\n \\end{array} } \\right] + \\left[ {\\begin{array}{cc}\n 0 & 9& 3\\\\\n 0& 6& 3\\\\\n12 & 6 & 3\n \\end{array} } \\right] = \\left[ {\\begin{array}{cc}\n 0 & 8& 5\\\\\n 1\/4& 7& 0\\\\\n47\/4& 6 & 3\n \\end{array} } \\right]"

b)

"A^T + A^{-1} = \\left[ {\\begin{array}{cc}\n 0 & 0& 4\\\\\n 3& 2& 2\\\\\n1 & 1 & 1\n \\end{array} } \\right] + \\left[ {\\begin{array}{cc}\n 0 & 1 & -2\\\\\n -1\/4 & -1& 3\\\\\n1\/4 & 0& 0 \\\\\n \\end{array} } \\right] = \\left[ {\\begin{array}{cc}\n 0 & 1 & 2\\\\\n 11\/4 & 1& 5\\\\\n5\/4 & 1& 1\\\\\n \\end{array} } \\right]"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog