Let us consider the properties of the inverse matrices. Suppose that "M_1" and "M_2" are invertible matrices. Then "(M_1M_2)^{-1} = M_2^{-1}M_1^{-1}." (1)
We should show that
"(A^{-1}B^T+2I)^{-1} = (2A+B^T)^{-1}A." (2)
The task will be done if we show the analogous equality for the inverted left and right hand-sides of (2):
"(A^{-1}B^T+2I) =\\big( (2A+B^T)^{-1}A\\big)^{-1}" .
According to (1) we may rewrite
"\\big( (2A+B^T)^{-1}A\\big)^{-1} = A^{-1}\\big( (2A+B^T)^{-1}\\big)^{-1} = A^{-1} (2A+B^T)."
Next we will use the distributive law for matrix multiplication and the commutative law for matrix addition:
"A^{-1} (2A+B^T) = 2A^{-1}A + A^{-1}B^T = 2I + A^{-1}B^T."
So we obtained the equality
"\\big( (2A+B^T)^{-1}A\\big)^{-1}=(A^{-1}B^T+2I) ."
We get the analogous equality for the inverse matrices:
"(2A+B^T)^{-1}A=(A^{-1}B^T+2I)^{-1} ."
Comments
Leave a comment