Question #113949
Now suppose that A and B are arbitrary n  n matrices such that A and 2A + BT are invertible.
Using general properties of matrix operations show
that (A-1BT + 2I)-1 = (2A + BT)-1A. Show all the steps.
1
Expert's answer
2020-05-05T19:53:25-0400

Let us consider the properties of the inverse matrices. Suppose that M1M_1 and M2M_2 are invertible matrices. Then (M1M2)1=M21M11.(M_1M_2)^{-1} = M_2^{-1}M_1^{-1}. (1)

We should show that

(A1BT+2I)1=(2A+BT)1A.(A^{-1}B^T+2I)^{-1} = (2A+B^T)^{-1}A. (2)

The task will be done if we show the analogous equality for the inverted left and right hand-sides of (2):

(A1BT+2I)=((2A+BT)1A)1(A^{-1}B^T+2I) =\big( (2A+B^T)^{-1}A\big)^{-1} .

According to (1) we may rewrite

((2A+BT)1A)1=A1((2A+BT)1)1=A1(2A+BT).\big( (2A+B^T)^{-1}A\big)^{-1} = A^{-1}\big( (2A+B^T)^{-1}\big)^{-1} = A^{-1} (2A+B^T).

Next we will use the distributive law for matrix multiplication and the commutative law for matrix addition:

A1(2A+BT)=2A1A+A1BT=2I+A1BT.A^{-1} (2A+B^T) = 2A^{-1}A + A^{-1}B^T = 2I + A^{-1}B^T.

So we obtained the equality

((2A+BT)1A)1=(A1BT+2I).\big( (2A+B^T)^{-1}A\big)^{-1}=(A^{-1}B^T+2I) .

We get the analogous equality for the inverse matrices:

(2A+BT)1A=(A1BT+2I)1.(2A+B^T)^{-1}A=(A^{-1}B^T+2I)^{-1} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS