(a) Let "w=\\rho(\\cos\\phi+i\\sin\\phi)"and "z=r(\\cos\\theta+i sin\\theta)" then by De Moivre's formula we have that "z^n=r^n(\\cos n\\theta+i \\sin n\\theta)".
"z^n=w \\rightsquigarrow r^n(\\cos n\\theta+i \\sin n\\theta)=\\rho(\\cos\\phi+i\\sin\\phi)"
Hence, "r^n=\\rho, \\,\\, n\\theta=\\phi+2\\pi k"
"w\\in\\mathbb R_- \\rightsquigarrow \\phi=\\pi"
For "n=6\\colon r=\\rho^{1\/6} \\bigg( \\cos \\frac{\\pi+2\\pi k}{6} +i\\sin \\frac{\\pi+2\\pi k}{6} \\bigg)"
for each "k\\in\\{0,1,\\dots,n-1=5\\}"
(b) Let "w=-729 \\rightsquigarrow \\rho=729=3^6"
Hence, "\\sqrt[6]{w}=3\\bigg(\\cos\\frac{\\pi+2\\pi k}{6} +i\\sin \\frac{\\pi+2\\pi k}{6} \\bigg), k\\in\\{0,1,\\dots,5\\}"
(c) "u+iv=(1+z)(1+z^2)=1+z+z^2+z^3="
"=(1+\\cos\\theta+\\cos2\\theta+\\cos3\\theta)+i(\\sin\\theta+\\sin2\\theta+\\sin3\\theta)"
Hence, "u=1+\\cos\\theta+\\cos2\\theta+\\cos3\\theta"
"v=\\sin\\theta+\\sin2\\theta+\\sin3\\theta", and
"\\dfrac{v}{u}=\\dfrac{\\sin\\theta+\\sin2\\theta+\\sin3\\theta}{1+\\cos\\theta+\\cos2\\theta+\\cos3\\theta}=\\tan3\\theta\/2" [1]
"u^2+v^2="
"=(1+\\cos\\theta+\\cos2\\theta+\\cos3\\theta)^2+(\\sin\\theta+\\sin2\\theta+\\sin3\\theta)^2="
"=4(\\cos\\theta\/2+\\cos3\\theta\/2)^2" [2]
"=4\\bigg( 2\\cos \\theta \\cos\\theta\/2 \\bigg)^2=16\\cos^2 \\theta \\cos^2\\theta\/2"
[1] https://www.wolframalpha.com/input/?i=Simplify%5B%28sin+x%2Bsin+2x+%2Bsin+3x%29%2F%281%2Bcos+x%2Bcos+2x%2Bcos+3x%29%5D
[2] https://www.wolframalpha.com/input/?i=Simplify%5B%28sin+x%2Bsin+2x+%2Bsin+3x%29%5E2%2B%281%2Bcos+x%2Bcos+2x%2Bcos+3x%29%5E2%5D
Comments
Leave a comment