Answer to Question #114657 in Linear Algebra for Struggling Student

Question #114657
Let w be a negative real number, z a 6th root of w.

(a) Show that z (k) = ρ^1/6 [cos((π+2kπ)/6) + isin((π+2kπ)/6)], k = 0, 1, 2, 3, 4, 5 is a formula for the 6th roots of w. Show all your working.

(b) Hence determine the 6th roots of−729.

(c) Given z = cosθ + isinθ and u + iv = (1 + z)(1 + z^2). Prove that v = utan(3θ/2) and u2 + v2 = 16cos^2(θ/2)cos^2(θ)
1
Expert's answer
2020-05-08T19:24:53-0400

(a) Let "w=\\rho(\\cos\\phi+i\\sin\\phi)"and "z=r(\\cos\\theta+i sin\\theta)" then by De Moivre's formula we have that "z^n=r^n(\\cos n\\theta+i \\sin n\\theta)".

"z^n=w \\rightsquigarrow r^n(\\cos n\\theta+i \\sin n\\theta)=\\rho(\\cos\\phi+i\\sin\\phi)"

Hence, "r^n=\\rho, \\,\\, n\\theta=\\phi+2\\pi k"

"w\\in\\mathbb R_- \\rightsquigarrow \\phi=\\pi"

For "n=6\\colon r=\\rho^{1\/6} \\bigg( \\cos \\frac{\\pi+2\\pi k}{6} +i\\sin \\frac{\\pi+2\\pi k}{6} \\bigg)"

for each "k\\in\\{0,1,\\dots,n-1=5\\}"


(b) Let "w=-729 \\rightsquigarrow \\rho=729=3^6"

Hence, "\\sqrt[6]{w}=3\\bigg(\\cos\\frac{\\pi+2\\pi k}{6} +i\\sin \\frac{\\pi+2\\pi k}{6} \\bigg), k\\in\\{0,1,\\dots,5\\}"


(c) "u+iv=(1+z)(1+z^2)=1+z+z^2+z^3="

"=(1+\\cos\\theta+\\cos2\\theta+\\cos3\\theta)+i(\\sin\\theta+\\sin2\\theta+\\sin3\\theta)"

Hence, "u=1+\\cos\\theta+\\cos2\\theta+\\cos3\\theta"

"v=\\sin\\theta+\\sin2\\theta+\\sin3\\theta", and

"\\dfrac{v}{u}=\\dfrac{\\sin\\theta+\\sin2\\theta+\\sin3\\theta}{1+\\cos\\theta+\\cos2\\theta+\\cos3\\theta}=\\tan3\\theta\/2" [1]


"u^2+v^2="

"=(1+\\cos\\theta+\\cos2\\theta+\\cos3\\theta)^2+(\\sin\\theta+\\sin2\\theta+\\sin3\\theta)^2="

"=4(\\cos\\theta\/2+\\cos3\\theta\/2)^2" [2]

"=4\\bigg( 2\\cos \\theta \\cos\\theta\/2 \\bigg)^2=16\\cos^2 \\theta \\cos^2\\theta\/2"



[1] https://www.wolframalpha.com/input/?i=Simplify%5B%28sin+x%2Bsin+2x+%2Bsin+3x%29%2F%281%2Bcos+x%2Bcos+2x%2Bcos+3x%29%5D


[2] https://www.wolframalpha.com/input/?i=Simplify%5B%28sin+x%2Bsin+2x+%2Bsin+3x%29%5E2%2B%281%2Bcos+x%2Bcos+2x%2Bcos+3x%29%5E2%5D



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog