(a) Let w = ρ ( cos ϕ + i sin ϕ ) w=\rho(\cos\phi+i\sin\phi) w = ρ ( cos ϕ + i sin ϕ ) and z = r ( cos θ + i s i n θ ) z=r(\cos\theta+i sin\theta) z = r ( cos θ + i s in θ ) then by De Moivre's formula we have that z n = r n ( cos n θ + i sin n θ ) z^n=r^n(\cos n\theta+i \sin n\theta) z n = r n ( cos n θ + i sin n θ ) .
z n = w ⇝ r n ( cos n θ + i sin n θ ) = ρ ( cos ϕ + i sin ϕ ) z^n=w \rightsquigarrow r^n(\cos n\theta+i \sin n\theta)=\rho(\cos\phi+i\sin\phi) z n = w ⇝ r n ( cos n θ + i sin n θ ) = ρ ( cos ϕ + i sin ϕ )
Hence, r n = ρ , n θ = ϕ + 2 π k r^n=\rho, \,\, n\theta=\phi+2\pi k r n = ρ , n θ = ϕ + 2 πk
w ∈ R − ⇝ ϕ = π w\in\mathbb R_- \rightsquigarrow \phi=\pi w ∈ R − ⇝ ϕ = π
For n = 6 : r = ρ 1 / 6 ( cos π + 2 π k 6 + i sin π + 2 π k 6 ) n=6\colon r=\rho^{1/6} \bigg( \cos \frac{\pi+2\pi k}{6} +i\sin \frac{\pi+2\pi k}{6} \bigg) n = 6 : r = ρ 1/6 ( cos 6 π + 2 πk + i sin 6 π + 2 πk )
for each k ∈ { 0 , 1 , … , n − 1 = 5 } k\in\{0,1,\dots,n-1=5\} k ∈ { 0 , 1 , … , n − 1 = 5 }
(b) Let w = − 729 ⇝ ρ = 729 = 3 6 w=-729 \rightsquigarrow \rho=729=3^6 w = − 729 ⇝ ρ = 729 = 3 6
Hence, w 6 = 3 ( cos π + 2 π k 6 + i sin π + 2 π k 6 ) , k ∈ { 0 , 1 , … , 5 } \sqrt[6]{w}=3\bigg(\cos\frac{\pi+2\pi k}{6} +i\sin \frac{\pi+2\pi k}{6} \bigg), k\in\{0,1,\dots,5\} 6 w = 3 ( cos 6 π + 2 πk + i sin 6 π + 2 πk ) , k ∈ { 0 , 1 , … , 5 }
(c) u + i v = ( 1 + z ) ( 1 + z 2 ) = 1 + z + z 2 + z 3 = u+iv=(1+z)(1+z^2)=1+z+z^2+z^3= u + i v = ( 1 + z ) ( 1 + z 2 ) = 1 + z + z 2 + z 3 =
= ( 1 + cos θ + cos 2 θ + cos 3 θ ) + i ( sin θ + sin 2 θ + sin 3 θ ) =(1+\cos\theta+\cos2\theta+\cos3\theta)+i(\sin\theta+\sin2\theta+\sin3\theta) = ( 1 + cos θ + cos 2 θ + cos 3 θ ) + i ( sin θ + sin 2 θ + sin 3 θ )
Hence, u = 1 + cos θ + cos 2 θ + cos 3 θ u=1+\cos\theta+\cos2\theta+\cos3\theta u = 1 + cos θ + cos 2 θ + cos 3 θ
v = sin θ + sin 2 θ + sin 3 θ v=\sin\theta+\sin2\theta+\sin3\theta v = sin θ + sin 2 θ + sin 3 θ , and
v u = sin θ + sin 2 θ + sin 3 θ 1 + cos θ + cos 2 θ + cos 3 θ = tan 3 θ / 2 \dfrac{v}{u}=\dfrac{\sin\theta+\sin2\theta+\sin3\theta}{1+\cos\theta+\cos2\theta+\cos3\theta}=\tan3\theta/2 u v = 1 + cos θ + cos 2 θ + cos 3 θ sin θ + sin 2 θ + sin 3 θ = tan 3 θ /2 [1]
u 2 + v 2 = u^2+v^2= u 2 + v 2 =
= ( 1 + cos θ + cos 2 θ + cos 3 θ ) 2 + ( sin θ + sin 2 θ + sin 3 θ ) 2 = =(1+\cos\theta+\cos2\theta+\cos3\theta)^2+(\sin\theta+\sin2\theta+\sin3\theta)^2= = ( 1 + cos θ + cos 2 θ + cos 3 θ ) 2 + ( sin θ + sin 2 θ + sin 3 θ ) 2 =
= 4 ( cos θ / 2 + cos 3 θ / 2 ) 2 =4(\cos\theta/2+\cos3\theta/2)^2 = 4 ( cos θ /2 + cos 3 θ /2 ) 2 [2]
= 4 ( 2 cos θ cos θ / 2 ) 2 = 16 cos 2 θ cos 2 θ / 2 =4\bigg( 2\cos \theta \cos\theta/2 \bigg)^2=16\cos^2 \theta \cos^2\theta/2 = 4 ( 2 cos θ cos θ /2 ) 2 = 16 cos 2 θ cos 2 θ /2
[1] https://www.wolframalpha.com/input/?i=Simplify%5B%28sin+x%2Bsin+2x+%2Bsin+3x%29%2F%281%2Bcos+x%2Bcos+2x%2Bcos+3x%29%5D
[2] https://www.wolframalpha.com/input/?i=Simplify%5B%28sin+x%2Bsin+2x+%2Bsin+3x%29%5E2%2B%281%2Bcos+x%2Bcos+2x%2Bcos+3x%29%5E2%5D
Comments