(a) Let w=ρ(cosϕ+isinϕ)and z=r(cosθ+isinθ) then by De Moivre's formula we have that zn=rn(cosnθ+isinnθ).
zn=w⇝rn(cosnθ+isinnθ)=ρ(cosϕ+isinϕ)
Hence, rn=ρ,nθ=ϕ+2πk
w∈R−⇝ϕ=π
For n=6:r=ρ1/6(cos6π+2πk+isin6π+2πk)
for each k∈{0,1,…,n−1=5}
(b) Let w=−729⇝ρ=729=36
Hence, 6w=3(cos6π+2πk+isin6π+2πk),k∈{0,1,…,5}
(c) u+iv=(1+z)(1+z2)=1+z+z2+z3=
=(1+cosθ+cos2θ+cos3θ)+i(sinθ+sin2θ+sin3θ)
Hence, u=1+cosθ+cos2θ+cos3θ
v=sinθ+sin2θ+sin3θ, and
uv=1+cosθ+cos2θ+cos3θsinθ+sin2θ+sin3θ=tan3θ/2 [1]
u2+v2=
=(1+cosθ+cos2θ+cos3θ)2+(sinθ+sin2θ+sin3θ)2=
=4(cosθ/2+cos3θ/2)2 [2]
=4(2cosθcosθ/2)2=16cos2θcos2θ/2
[1] https://www.wolframalpha.com/input/?i=Simplify%5B%28sin+x%2Bsin+2x+%2Bsin+3x%29%2F%281%2Bcos+x%2Bcos+2x%2Bcos+3x%29%5D
[2] https://www.wolframalpha.com/input/?i=Simplify%5B%28sin+x%2Bsin+2x+%2Bsin+3x%29%5E2%2B%281%2Bcos+x%2Bcos+2x%2Bcos+3x%29%5E2%5D
Comments
Leave a comment