Answer to Question #114657 in Linear Algebra for Struggling Student

Question #114657
Let w be a negative real number, z a 6th root of w.

(a) Show that z (k) = ρ^1/6 [cos((π+2kπ)/6) + isin((π+2kπ)/6)], k = 0, 1, 2, 3, 4, 5 is a formula for the 6th roots of w. Show all your working.

(b) Hence determine the 6th roots of−729.

(c) Given z = cosθ + isinθ and u + iv = (1 + z)(1 + z^2). Prove that v = utan(3θ/2) and u2 + v2 = 16cos^2(θ/2)cos^2(θ)
1
Expert's answer
2020-05-08T19:24:53-0400

(a) Let w=ρ(cosϕ+isinϕ)w=\rho(\cos\phi+i\sin\phi)and z=r(cosθ+isinθ)z=r(\cos\theta+i sin\theta) then by De Moivre's formula we have that zn=rn(cosnθ+isinnθ)z^n=r^n(\cos n\theta+i \sin n\theta).

zn=wrn(cosnθ+isinnθ)=ρ(cosϕ+isinϕ)z^n=w \rightsquigarrow r^n(\cos n\theta+i \sin n\theta)=\rho(\cos\phi+i\sin\phi)

Hence, rn=ρ,  nθ=ϕ+2πkr^n=\rho, \,\, n\theta=\phi+2\pi k

wRϕ=πw\in\mathbb R_- \rightsquigarrow \phi=\pi

For n=6 ⁣:r=ρ1/6(cosπ+2πk6+isinπ+2πk6)n=6\colon r=\rho^{1/6} \bigg( \cos \frac{\pi+2\pi k}{6} +i\sin \frac{\pi+2\pi k}{6} \bigg)

for each k{0,1,,n1=5}k\in\{0,1,\dots,n-1=5\}


(b) Let w=729ρ=729=36w=-729 \rightsquigarrow \rho=729=3^6

Hence, w6=3(cosπ+2πk6+isinπ+2πk6),k{0,1,,5}\sqrt[6]{w}=3\bigg(\cos\frac{\pi+2\pi k}{6} +i\sin \frac{\pi+2\pi k}{6} \bigg), k\in\{0,1,\dots,5\}


(c) u+iv=(1+z)(1+z2)=1+z+z2+z3=u+iv=(1+z)(1+z^2)=1+z+z^2+z^3=

=(1+cosθ+cos2θ+cos3θ)+i(sinθ+sin2θ+sin3θ)=(1+\cos\theta+\cos2\theta+\cos3\theta)+i(\sin\theta+\sin2\theta+\sin3\theta)

Hence, u=1+cosθ+cos2θ+cos3θu=1+\cos\theta+\cos2\theta+\cos3\theta

v=sinθ+sin2θ+sin3θv=\sin\theta+\sin2\theta+\sin3\theta, and

vu=sinθ+sin2θ+sin3θ1+cosθ+cos2θ+cos3θ=tan3θ/2\dfrac{v}{u}=\dfrac{\sin\theta+\sin2\theta+\sin3\theta}{1+\cos\theta+\cos2\theta+\cos3\theta}=\tan3\theta/2 [1]


u2+v2=u^2+v^2=

=(1+cosθ+cos2θ+cos3θ)2+(sinθ+sin2θ+sin3θ)2==(1+\cos\theta+\cos2\theta+\cos3\theta)^2+(\sin\theta+\sin2\theta+\sin3\theta)^2=

=4(cosθ/2+cos3θ/2)2=4(\cos\theta/2+\cos3\theta/2)^2 [2]

=4(2cosθcosθ/2)2=16cos2θcos2θ/2=4\bigg( 2\cos \theta \cos\theta/2 \bigg)^2=16\cos^2 \theta \cos^2\theta/2



[1] https://www.wolframalpha.com/input/?i=Simplify%5B%28sin+x%2Bsin+2x+%2Bsin+3x%29%2F%281%2Bcos+x%2Bcos+2x%2Bcos+3x%29%5D


[2] https://www.wolframalpha.com/input/?i=Simplify%5B%28sin+x%2Bsin+2x+%2Bsin+3x%29%5E2%2B%281%2Bcos+x%2Bcos+2x%2Bcos+3x%29%5E2%5D



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment