Let "a_i=(a_{1i}\\,\\,\\,\\, a_{2i}\\,\\,\\,\\,a_{3i})^T" for "i=1,2,3", and "b=(b_1\\,\\,\\,\\,b_2\\,\\,\\,\\,b_3)^T", "x=(x_1\\,\\,\\,\\,x_2\\,\\,\\,\\,x_3)^T".
We have "b=Ax=a_1x_1+a_2x_2+a_3x_3".
Then "|a_1 \\,\\,\\,\\, b\\,\\,\\,\\,a_3|=|a_1\\,\\,\\,\\, (a_1x_1+a_2x_2+a_3x_3) \\,\\,\\,\\,a_3|="
"=x_1|a_1\\,\\,\\,\\,a_1\\,\\,\\,\\,a_3|+x_2|a_1\\,\\,\\,\\,a_2\\,\\,\\,\\,a_3|+x_3|a_1\\,\\,\\,\\,a_3\\,\\,\\,\\,a_3|="
"=x_2 \\det A".
If "\\det A \\ne 0", it follows that "x_2=\\frac{|a_1 \\,\\,\\,\\,b\\,\\,\\,\\,a_3|}{\\det A}" .
Comments
Leave a comment