Let ai=(a1ia2ia3i)T for i=1,2,3, and b=(b1b2b3)T, x=(x1x2x3)T.
We have b=Ax=a1x1+a2x2+a3x3.
Then ∣a1ba3∣=∣a1(a1x1+a2x2+a3x3)a3∣=
=x1∣a1a1a3∣+x2∣a1a2a3∣+x3∣a1a3a3∣=
=x2detA.
If detA=0, it follows that x2=detA∣a1ba3∣ .
Comments
Leave a comment