Answer to Question #114479 in Linear Algebra for Mzwandile

Question #114479
QUESTION 5

Let a11 x1 + a12 x2 + a13x3 = b1

a21 x1 + a22 x2 + a23 x3 = b2

a31 x1 + a32 x2 + a33 x3 = b3.

Show that if det (A) ≠ 0 where det(A) is the determinant of the coefficient matrix;

then x2 = det(A2)/det(A) where det(A2) is the determinant obtained by replacing the second column of det(A)

by (b1; b2; b3)^T
1
Expert's answer
2020-05-07T19:20:26-0400

Let "a_i=(a_{1i}\\,\\,\\,\\, a_{2i}\\,\\,\\,\\,a_{3i})^T" for "i=1,2,3", and "b=(b_1\\,\\,\\,\\,b_2\\,\\,\\,\\,b_3)^T", "x=(x_1\\,\\,\\,\\,x_2\\,\\,\\,\\,x_3)^T".

We have "b=Ax=a_1x_1+a_2x_2+a_3x_3".

Then "|a_1 \\,\\,\\,\\, b\\,\\,\\,\\,a_3|=|a_1\\,\\,\\,\\, (a_1x_1+a_2x_2+a_3x_3) \\,\\,\\,\\,a_3|="

"=x_1|a_1\\,\\,\\,\\,a_1\\,\\,\\,\\,a_3|+x_2|a_1\\,\\,\\,\\,a_2\\,\\,\\,\\,a_3|+x_3|a_1\\,\\,\\,\\,a_3\\,\\,\\,\\,a_3|="

"=x_2 \\det A".

If "\\det A \\ne 0",  it follows that "x_2=\\frac{|a_1 \\,\\,\\,\\,b\\,\\,\\,\\,a_3|}{\\det A}" .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog