Question #102872
For the vector space P2,find the dual basis of {1+x,1+2x,1+x+x2}?
1
Expert's answer
2020-03-19T16:56:17-0400

We are given a vector space of polynomials of degree less than or equal to 2. The given basis is, {1+x,1+2x,1+x+x2}\{1+x, 1+2x, 1+x+x^2\} . We have to find the dual basis for it.

So, we want to find f1,f2,f3f_1, f_2, f_3 such that, fi:P2R,i=1,2,3f_i:P_2\rightarrow\mathbb{R}, i=1,2,3 are linear functionals, and,


f1(1+x)=1,f2(1+2x)=1,f3(1+x+x2)=1f_1(1+x)=1 , \\ f_2(1+2x)=1 ,\\ f_3(1+x+x^2)=1


Consider a general element of P2P_2 , say P(x)=ax2+bx+c,[a,b,cR]P(x)=ax^2+bx+c, [a,b,c\in\mathbb{R}]

As {1+x,1+2x,1+x+x2}\{1+x, 1+2x, 1+x+x^2\} is a basis set, P(x)P(x) can be written uniquely as a linear combination of these 3 polynomials. Let the representation be,

P(x)=α(1+x)+β(1+2x)+γ(1+x+x2)=γx2+(α+2β+γ)x+(α+β+γ)P(x)=\alpha(1+x)+\beta(1+2x)+\gamma(1+x+x^2)\\ =\gamma x^2+(\alpha+2\beta+\gamma)x+(\alpha+\beta+\gamma)

Therefore, we must have,


γ=a,α+2β+γ=b,α+β+γ=c\gamma=a,\\ \alpha+2\beta+\gamma=b,\\ \alpha+\beta+\gamma=c


Hence, γ=a,α=2cba,β=bc\gamma=a, \alpha=2c-b-a, \beta=b-c

So, P(x)P(x) can be written as,


P(x)=(2cba)(1+x)+(bc)(1+2x)+a(1+x+x2)P(x)=(2c-b-a)(1+x)+(b-c)(1+2x)+a(1+x+x^2)

So, we can define f1,f2,f3f_1, f_2, f_3 as follows:


f1(ax2+bx+c)=2cbaf2(ax2+bx+c)=bcf3(ax2+bx+c)=af_1(ax^2+bx+c)=2c-b-a\\ f_2(ax^2+bx+c)=b-c\\ f_3(ax^2+bx+c)=a

f1,f2,f3f_1, f_2, f_3 are linear in coefficients of the polynimial. Hence, they are linear functionals. Hence {f1,f2,f3}\{f_1, f_2, f_3\} is the dual basis for the given basis set.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS