Question #102809
Check that B={1,x+1,(x+1)(x+1)} is a basis for p2.
Find the co-ordinates of 2+x+3x2 with respect to this basis.
1
Expert's answer
2020-02-12T11:54:40-0500

Consider vectors

b1=1,b2=x+1,b3=(x+1)2b_1=1, b_2=x+1, b_3=(x+1)^2

Let's form a linear combination

α1b1+α2b2+α3b3=0\alpha_1b_1+\alpha_2 b_2+\alpha_3 b_3=0

and show that equality is possible if

α1=α2=α3=0\alpha_1=\alpha_2=\alpha_3=0

α11+α2(x+1)+α3(x2+2x+1)=01α1+xα2x+α2+x2α3+2xα3+α3=0x2:α3=0x:α2+2α3=0    α2=0x0:α1+α2+α3=0    α1=0\alpha_11+\alpha_2(x+1)+\alpha_3(x^2+2x+1)=0\\ 1\alpha_1+x\alpha_2x+\alpha_2+x^2\alpha_3+2x\alpha_3+\alpha_3=0\\ x^2: \alpha_3=0\\ x: \alpha_2+2\alpha_3=0\implies\alpha_2=0\\ x^0: \alpha_1+\alpha_2+\alpha_3=0\implies\alpha_1=0

So, basic vectors are

b1=1,b2=x+1,b3=(x+1)2f(x)=3x2+x+2b_1=1, b_2=x+1, b_3=(x+1)^2\\ f(x)= 3x^2+x+2

decompose it in the basis b1,b2,b3b_1, b_2, b_3

according to the scheme of Horner:

312132413513\begin{matrix} & 3&1&2 \\ -1 & 3&-2&4\\ -1&3&-5\\ -1&3\\ \end{matrix}

f(x)=3(x+1)25(x+1)+4==4b15b2+3b3==(4;5;3)f(x)=3(x+1)^2-5(x+1)+4=\\ =4b_1-5b_2+3b_3=\\ =(4;-5;3)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS