Consider vectors
b1​=1,b2​=x+1,b3​=(x+1)2
Let's form a linear combination
α1​b1​+α2​b2​+α3​b3​=0
and show that equality is possible if
α1​=α2​=α3​=0
α1​1+α2​(x+1)+α3​(x2+2x+1)=01α1​+xα2​x+α2​+x2α3​+2xα3​+α3​=0x2:α3​=0x:α2​+2α3​=0⟹α2​=0x0:α1​+α2​+α3​=0⟹α1​=0
So, basic vectors are
b1​=1,b2​=x+1,b3​=(x+1)2f(x)=3x2+x+2
decompose it in the basis b1​,b2​,b3​
according to the scheme of Horner:
−1−1−1​3333​1−2−5​24
f(x)=3(x+1)2−5(x+1)+4==4b1​−5b2​+3b3​==(4;−5;3)
Comments