Consider vectors
"b_1=1, b_2=x+1, b_3=(x+1)^2"
Let's form a linear combination
"\\alpha_1b_1+\\alpha_2 b_2+\\alpha_3 b_3=0"
and show that equality is possible if
"\\alpha_1=\\alpha_2=\\alpha_3=0"
"\\alpha_11+\\alpha_2(x+1)+\\alpha_3(x^2+2x+1)=0\\\\\n1\\alpha_1+x\\alpha_2x+\\alpha_2+x^2\\alpha_3+2x\\alpha_3+\\alpha_3=0\\\\\nx^2: \\alpha_3=0\\\\\nx: \\alpha_2+2\\alpha_3=0\\implies\\alpha_2=0\\\\\nx^0: \\alpha_1+\\alpha_2+\\alpha_3=0\\implies\\alpha_1=0"
So, basic vectors are
"b_1=1, b_2=x+1, b_3=(x+1)^2\\\\\nf(x)= 3x^2+x+2"
decompose it in the basis "b_1, b_2, b_3"
according to the scheme of Horner:
"\\begin{matrix}\n & 3&1&2 \\\\\n -1 & 3&-2&4\\\\\n-1&3&-5\\\\\n-1&3\\\\\n\\end{matrix}"
"f(x)=3(x+1)^2-5(x+1)+4=\\\\\n=4b_1-5b_2+3b_3=\\\\\n=(4;-5;3)"
Comments
Leave a comment