Consider vectors
b1=1,b2=x+1,b3=(x+1)2
Let's form a linear combination
α1b1+α2b2+α3b3=0
and show that equality is possible if
α1=α2=α3=0
α11+α2(x+1)+α3(x2+2x+1)=01α1+xα2x+α2+x2α3+2xα3+α3=0x2:α3=0x:α2+2α3=0⟹α2=0x0:α1+α2+α3=0⟹α1=0
So, basic vectors are
b1=1,b2=x+1,b3=(x+1)2f(x)=3x2+x+2
decompose it in the basis b1,b2,b3
according to the scheme of Horner:
−1−1−133331−2−524
f(x)=3(x+1)2−5(x+1)+4==4b1−5b2+3b3==(4;−5;3)
Comments