I think there is a mistake in the problem, for example, multiplying the m x r matrix A A A by the m x s matrix B B B .
Let A A A be 2x3 matrix and B B B be 2x1 matrix, then the product of A A A by B B B won't be defined:
( a 11 a 12 a 13 a 21 a 22 a 23 ) \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix} ( a 11 a 21 a 12 a 22 a 13 a 23 ) *( b 11 b 21 ) \begin{pmatrix}
b_{11} \\
b_{21}
\end{pmatrix} ( b 11 b 21 ) = ? =? = ?
To multiply matrices, the number of columns of one of them must be equal to the number of rows of another one!
For example,
( a 11 a 12 a 21 a 22 a 31 a 32 ) \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix} ⎝ ⎛ a 11 a 21 a 31 a 12 a 22 a 32 ⎠ ⎞ * ( b 11 b 12 b 21 b 22 ) \begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix} ( b 11 b 21 b 12 b 22 ) =( a 11 ∗ b 11 + a 12 ∗ b 21 a 11 ∗ b 12 + a 12 ∗ b 22 a 21 ∗ b 11 + a 22 ∗ b 21 a 21 ∗ b 12 + a 22 ∗ b 22 a 31 ∗ b 11 + a 32 ∗ b 21 a 31 ∗ b 12 + a 32 ∗ b 22 ) \begin{pmatrix}
a_{11}*b_{11}+ a_{12}*b_{21}& a_{11}*b_{12}+a_{12}*b_{22} \\
a_{21}*b_{11}+ a_{22}*b_{21}& a_{21}*b_{12}+a_{22}*b_{22} \\
a_{31}*b_{11}+ a_{32}*b_{21}& a_{31}*b_{12}+a_{32}*b_{22}
\end{pmatrix} ⎝ ⎛ a 11 ∗ b 11 + a 12 ∗ b 21 a 21 ∗ b 11 + a 22 ∗ b 21 a 31 ∗ b 11 + a 32 ∗ b 21 a 11 ∗ b 12 + a 12 ∗ b 22 a 21 ∗ b 12 + a 22 ∗ b 22 a 31 ∗ b 12 + a 32 ∗ b 22 ⎠ ⎞
In matrices A A A and B B B we can't do like this!
Comments
Thank for a clarification. Please submit a new question clearly indicating how matrices and parts should be located.
I think it meant, (A B) where matrix A and B are side by side in the same bracket, while (C D) where matrix C is on top of D in the same bracket