Question #102725
Consider the basis S = {v1, v2, v3} for R3, where v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4), and let T:R3 rightarrow R2 be the linear operator such that T(V1) = (1, 0), T(v2) = (- 1, 1), T(v3) = (0, 1) Find a formula for T(x1, x2, x3), and use that formula to find
1
Expert's answer
2020-02-13T09:23:32-0500

In case we want to transform R3 into R2 we need a Matrix of size 3x2.(x1x4x2x5x3x6)\begin{pmatrix} x1 & x4 \\ x2 & x5 \\ x3 & x6 \end{pmatrix} The Matrix gives us 6 variables which we can find by solving 6 corresponding equations 

{x1+2x2+x3=1x4+2x5+x6=02x1+9x2=12x4+9x5=13x1+3x2+4x3=03x4+3x5+4x6=1\begin{cases} x1+2*x2+x3=1\\ x4+2*x5+x6=0\\ 2*x1+9*x2=-1\\ 2*x4+9*x5=1\\ 3*x1+3*x2+4*x3=0\\ 3*x4+3*x5+4*x6=1\\ \end{cases}     \implies {x1+2x2+x3=13x1+3x2+4x3=02x1+9x2=1{2x4+9x5=13x4+3x5+4x6=1x4+2x5+x6=0\begin{cases} x1+2*x2+x3=1\\ 3*x1+3*x2+4*x3=0\\ 2*x1+9*x2=-1\\ \end{cases} \begin{cases} 2*x4+9*x5=1\\ 3*x4+3*x5+4*x6=1\\ x4+2*x5+x6=0\\ \end{cases}     \implies

{x1+5x2=43x1+3x2+4x3=02x1+9x2=1{2x4+9x5=13x4+3x5+4x6=1x4+5x5=1\begin{cases} x1+5*x2=4\\ 3*x1+3*x2+4*x3=0\\ 2*x1+9*x2=-1\\ \end{cases} \begin{cases} 2*x4+9*x5=1\\ 3*x4+3*x5+4*x6=1\\ x4+5*x5=-1\\ \end{cases}     \implies

{x2=9x1=41x3=24{x5=3x4=14x6=8\begin{cases} x2=9\\ x1=-41\\ x3=24\\ \end{cases} \begin{cases} x5=-3\\ x4=14\\ x6=-8\\ \end{cases}

Solution is (411493248)\begin{pmatrix} -41 & 14 \\ 9 & -3 \\ 24 & -8 \end{pmatrix}.

Then we can get the formula, which is T(x,y,z)= (-41*x+9*y+24*z, 14*x-3*y-8*z)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS