The Cauchy-Riemann equation:
Let "f(x,y)=u(x,y)+iv(x,y)" , where "u" and "v" are real.
Then u=sinxcoshy and v=cosxsinhy st.
"u_x=\\cos x\\cosh y = v_y,~~~~~~~v_x=-\\sin x\\sinh y = - u_y,"
i.e., CR conditions hold.
"f(z)=\\frac{(e^{ix}-e^{-ix})(e^y+e^{-y})}{4i}+i\\frac{(e^{ix}+e^{-ix})(e^y-e^{-y})}{4}=\\frac{e^{ix}e^{-y}-e^{-ix}e^{y}}{2i}= \\frac{e^{i(x+iy)}-e^{-i(x+iy)}}{2i}=\\sin z;"
The Laplace equation:
"\\Omega_{x}=\\cos(x+iy),\\Omega_{xx}=-\\sin(x+iy),"
"\\Omega_{y}=\\cos (x+iy)*i, \\Omega_{yy}=-\\sin(x+iy)*i^2=\\sin(x+iy)."
Thus, "\\Omega_{xx}+\\Omega_{yy}=0"
Comments
Leave a comment