The Cauchy-Riemann equation:
Let f(x,y)=u(x,y)+iv(x,y) , where u and v are real.
Then u=sinxcoshy and v=cosxsinhy st.
ux=cosxcoshy=vy, vx=−sinxsinhy=−uy,
i.e., CR conditions hold.
f(z)=4i(eix−e−ix)(ey+e−y)+i4(eix+e−ix)(ey−e−y)=2ieixe−y−e−ixey=2iei(x+iy)−e−i(x+iy)=sinz;
The Laplace equation:
Ωx=cos(x+iy),Ωxx=−sin(x+iy),
Ωy=cos(x+iy)∗i,Ωyy=−sin(x+iy)∗i2=sin(x+iy).
Thus, Ωxx+Ωyy=0
Comments