Question #102645
Show that the function omega = sin z satisfies the Cauchy-Riemann and Laplace
equations
1
Expert's answer
2020-03-05T11:09:45-0500

The Cauchy-Riemann equation:


Let f(x,y)=u(x,y)+iv(x,y)f(x,y)=u(x,y)+iv(x,y) , where uu and vv are real.

Then u=sinxcoshy and v=cosxsinhy st.


ux=cosxcoshy=vy,       vx=sinxsinhy=uy,u_x=\cos x\cosh y = v_y,~~~~~~~v_x=-\sin x\sinh y = - u_y,


i.e., CR conditions hold.


f(z)=(eixeix)(ey+ey)4i+i(eix+eix)(eyey)4=eixeyeixey2i=ei(x+iy)ei(x+iy)2i=sinz;f(z)=\frac{(e^{ix}-e^{-ix})(e^y+e^{-y})}{4i}+i\frac{(e^{ix}+e^{-ix})(e^y-e^{-y})}{4}=\frac{e^{ix}e^{-y}-e^{-ix}e^{y}}{2i}= \frac{e^{i(x+iy)}-e^{-i(x+iy)}}{2i}=\sin z;


The Laplace equation:


Ωx=cos(x+iy),Ωxx=sin(x+iy),\Omega_{x}=\cos(x+iy),\Omega_{xx}=-\sin(x+iy),


Ωy=cos(x+iy)i,Ωyy=sin(x+iy)i2=sin(x+iy).\Omega_{y}=\cos (x+iy)*i, \Omega_{yy}=-\sin(x+iy)*i^2=\sin(x+iy).


Thus, Ωxx+Ωyy=0\Omega_{xx}+\Omega_{yy}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS