The matrix A A A is skew-hermitian if it satisfies the relation
A A A skew-hermitian ⟺ A H = − A A^H = -A A H = − A
where A H A^{H} A H denotes the conjugate transpose of the matrix A A A . In component form, this means that
A A A skew-hermitian ⟺ a i j = − a ‾ j i a_{ij} = -\overline{a}_{ji} a ij = − a ji
for all indices i i i and j j j , where a i j a_{ij} a ij is the element in the j j j th row and i i i th column of A A A , and the overline denotes complex conjugation.
Therefore, to show that given matrix A A A is skew-hermitian, you should show that A H = − A A^H = -A A H = − A .
A = [ 0 − 5 − i − 2 + 3 i 5 − i − 3 i − 6 2 + 3 i 6 6 i ] A = \begin{bmatrix}
0 & -5-i & -2+3i\\
5-i & -3i & -6 \\
2+3i & 6 & 6i
\end{bmatrix} A = ⎣ ⎡ 0 5 − i 2 + 3 i − 5 − i − 3 i 6 − 2 + 3 i − 6 6 i ⎦ ⎤
Determine − A -A − A .
− A = [ 0 5 + i 2 − 3 i − 5 + i 3 i 6 − 2 − 3 i − 6 − 6 i ] -A = \begin{bmatrix}
0 & 5+i & 2-3i\\
-5+i & 3i & 6 \\
-2-3i & -6 & -6i
\end{bmatrix} − A = ⎣ ⎡ 0 − 5 + i − 2 − 3 i 5 + i 3 i − 6 2 − 3 i 6 − 6 i ⎦ ⎤
This equals complex conjugation:
= [ 0 ‾ 5 − i ‾ 2 + 3 i ‾ − 5 − i ‾ − 3 i ‾ 6 ‾ − 2 + 3 i ‾ − 6 ‾ 6 i ‾ ] = \begin{bmatrix}
\overline{0} &\overline{5-i} & \overline{2+3i}\\
\overline{-5-i} & \overline{-3i} & \overline{6} \\
\overline{-2+3i} & \overline{-6} & \overline{6i}
\end{bmatrix} = ⎣ ⎡ 0 − 5 − i − 2 + 3 i 5 − i − 3 i − 6 2 + 3 i 6 6 i ⎦ ⎤
It equals the transposed matrix:
= [ 0 ‾ − 5 − i ‾ − 2 + 3 i ‾ 5 − i ‾ − 3 i ‾ − 6 ‾ 2 + 3 i ‾ 6 ‾ 6 i ‾ ] T = A H = \begin{bmatrix}
\overline{0} &\overline{-5-i} & \overline{-2+3i}\\
\overline{5-i} & \overline{-3i} & \overline{-6} \\
\overline{2+3i} & \overline{6} & \overline{6i}
\end{bmatrix}^{T} = A^H = ⎣ ⎡ 0 5 − i 2 + 3 i − 5 − i − 3 i 6 − 2 + 3 i − 6 6 i ⎦ ⎤ T = A H
Thus, the matrix A A A is skew-hermitian.
Use information from Wikipedia: https://en.wikipedia.org/wiki/Skew-Hermitian_matrix
Comments