Question #102657
Show that matrix A given below is skew-hermitian:


A=[0 -5-i -2+3i]

[ 5-i -3i -6]

[2+3i 6 6i ]
1
Expert's answer
2020-02-24T11:50:04-0500

The matrix AA is skew-hermitian if it satisfies the relation


AA skew-hermitian ⟺ AH=AA^H = -A


where AHA^{H}denotes the conjugate transpose of the matrix AA. In component form, this means that


AA skew-hermitian ⟺ aij=ajia_{ij} = -\overline{a}_{ji}


for all indices ii  and jj , where aija_{ij} is the element in the jjth row and iith column of AA , and the overline denotes complex conjugation.


Therefore, to show that given matrix AA is skew-hermitian, you should show that AH=AA^H = -A.


A=[05i2+3i5i3i62+3i66i]A = \begin{bmatrix} 0 & -5-i & -2+3i\\ 5-i & -3i & -6 \\ 2+3i & 6 & 6i \end{bmatrix}


Determine A-A.


A=[05+i23i5+i3i623i66i]-A = \begin{bmatrix} 0 & 5+i & 2-3i\\ -5+i & 3i & 6 \\ -2-3i & -6 & -6i \end{bmatrix}


This equals complex conjugation:


=[05i2+3i5i3i62+3i66i]= \begin{bmatrix} \overline{0} &\overline{5-i} & \overline{2+3i}\\ \overline{-5-i} & \overline{-3i} & \overline{6} \\ \overline{-2+3i} & \overline{-6} & \overline{6i} \end{bmatrix}


It equals the transposed matrix:


=[05i2+3i5i3i62+3i66i]T=AH= \begin{bmatrix} \overline{0} &\overline{-5-i} & \overline{-2+3i}\\ \overline{5-i} & \overline{-3i} & \overline{-6} \\ \overline{2+3i} & \overline{6} & \overline{6i} \end{bmatrix}^{T} = A^H


Thus, the matrix AA is skew-hermitian.


Use information from Wikipedia: https://en.wikipedia.org/wiki/Skew-Hermitian_matrix

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS