The matrix "A" is skew-hermitian if it satisfies the relation
"A" skew-hermitian ⟺ "A^H = -A"
where "A^{H}"denotes the conjugate transpose of the matrix "A". In component form, this means that
"A" skew-hermitian ⟺ "a_{ij} = -\\overline{a}_{ji}"
for all indices "i" and "j" , where "a_{ij}" is the element in the "j"th row and "i"th column of "A" , and the overline denotes complex conjugation.
Therefore, to show that given matrix "A" is skew-hermitian, you should show that "A^H = -A".
"A = \\begin{bmatrix}\n 0 & -5-i & -2+3i\\\\\n 5-i & -3i & -6 \\\\\n 2+3i & 6 & 6i\n\\end{bmatrix}"
Determine "-A".
"-A = \\begin{bmatrix}\n 0 & 5+i & 2-3i\\\\\n -5+i & 3i & 6 \\\\\n -2-3i & -6 & -6i\n\\end{bmatrix}"
This equals complex conjugation:
"= \\begin{bmatrix}\n \\overline{0} &\\overline{5-i} & \\overline{2+3i}\\\\\n \\overline{-5-i} & \\overline{-3i} & \\overline{6} \\\\\n \\overline{-2+3i} & \\overline{-6} & \\overline{6i}\n\\end{bmatrix}"
It equals the transposed matrix:
"= \\begin{bmatrix}\n \\overline{0} &\\overline{-5-i} & \\overline{-2+3i}\\\\\n \\overline{5-i} & \\overline{-3i} & \\overline{-6} \\\\\n \\overline{2+3i} & \\overline{6} & \\overline{6i}\n\\end{bmatrix}^{T} = A^H"
Thus, the matrix "A" is skew-hermitian.
Use information from Wikipedia: https://en.wikipedia.org/wiki/Skew-Hermitian_matrix
Comments
Leave a comment