Question #93308
Find the orthogonal trajectories of the family of parabolas x = cy²
1
Expert's answer
2019-09-04T09:13:09-0400

Let (x,y=Y)(x,y=Y) be the intersection point of the curves

y=x/cY=Y(x),x>0,y>0.y=\sqrt{x/c} \quad \bot \quad Y=Y(x), \quad x>0, \quad y>0.

Then

Y=1/yY=2cx.Y'=-1/y' \quad \lrArr \quad Y'=-2\sqrt {cx}.

But c=xy2.c=\frac{x}{y^2}. Therefore

Y=2xYorYdY=2xdxorYdY=2xdx.Y'=-\frac{2x}{Y} \quad \text{or} \quad YdY=-2xdx \quad \text{or} \quad \int YdY=-\int 2xdx.

Then

Y2+2x2=CY^2+2x^2=C

We get the family of ellipses finally:

x2a2+y22a2=1\frac{x^2}{a^2} + \frac{y^2}{2a^2}=1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS