Let (x,y=Y)(x,y=Y)(x,y=Y) be the intersection point of the curves
y=x/c⊥Y=Y(x),x>0,y>0.y=\sqrt{x/c} \quad \bot \quad Y=Y(x), \quad x>0, \quad y>0.y=x/c⊥Y=Y(x),x>0,y>0.
Then
Y′=−1/y′⇔Y′=−2cx.Y'=-1/y' \quad \lrArr \quad Y'=-2\sqrt {cx}.Y′=−1/y′⇔Y′=−2cx.
But c=xy2.c=\frac{x}{y^2}.c=y2x. Therefore
Y′=−2xYorYdY=−2xdxor∫YdY=−∫2xdx.Y'=-\frac{2x}{Y} \quad \text{or} \quad YdY=-2xdx \quad \text{or} \quad \int YdY=-\int 2xdx.Y′=−Y2xorYdY=−2xdxor∫YdY=−∫2xdx.
Y2+2x2=CY^2+2x^2=CY2+2x2=C
We get the family of ellipses finally:
x2a2+y22a2=1\frac{x^2}{a^2} + \frac{y^2}{2a^2}=1a2x2+2a2y2=1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments