Let "(x,y=Y)" be the intersection point of the curves
"y=\\sqrt{x\/c} \\quad \\bot \\quad Y=Y(x), \\quad x>0, \\quad y>0."
Then
"Y'=-1\/y' \\quad \\lrArr \\quad Y'=-2\\sqrt {cx}."
But "c=\\frac{x}{y^2}." Therefore
"Y'=-\\frac{2x}{Y} \\quad \\text{or} \\quad YdY=-2xdx \\quad \\text{or} \\quad \\int YdY=-\\int 2xdx."
Then
"Y^2+2x^2=C"
We get the family of ellipses finally:
"\\frac{x^2}{a^2} + \\frac{y^2}{2a^2}=1".
Comments
Leave a comment