2y2+2yet+(y+et)dy/dt=0
(2y2+2yet)dt+(y+et)dy=0
P(t,y)=2y2+2yet
Q(t,y)=y+et
∂P/∂y=y+2et
∂Q/∂t=et
∂P/∂y=∂Q/∂t, so equation is not exact.
Let's find an integrating factor μ :
ξ=Q∂P/∂y−∂Q/∂t=y+ety+2et−et=y+ety+et=1
ξ is a function of t only (not y), let it be denoted by ξ(t). Then
μ=e∫ξ(t)dt=e∫dt=et
Differential equation with integrating factor:
(2y2et+2ye2t)dt+(yet+e2t)dy=0
P1(t,y)=2y2et+2ye2t
Q1(t,y)=yet+e2t
∂P1/∂y=yet+2e2t
∂Q1/∂t=yet+2e2t
∂P1/∂y=∂Q1/∂t, so equation (2y2et+2ye2t)dt+(yet+e2t)dy=0 is exact.
So, solution of this equation f(t,y) and ∂f(t,y)/∂t=P1(t,y) and ∂f(t,y)/∂y=Q1(t,y).
f(t,y)=∫P1(t,y)dt+ϕ(y)
f(t,y)=∫(2y2et+2ye2t)dt+ϕ(y)=2y2et+ye2t+ϕ(y)
∂f(t,y)/∂y=(2y2et+ye2t+ϕ(y))′=yet+e2t+ϕ′(y)=Q1(t,y)
yet+e2t+ϕ′(y)=yet+e2t
ϕ′(y)=0
ϕ(y)=C1
f(t,y)=2y2et+ye2t+C1
So, a solution of the differential equation is
f(t,y)=C2
2y2et+ye2t+C1=C2,C=C2−C1,
2y2et+ye2t=C
Answer: 2y2et+ye2t=C
Comments