Question #93053
Find the general solution of the differential equation

y²/2 + 2y exp(t) + (y+exp(t)) dy/dt = 0
1
Expert's answer
2019-08-25T12:45:19-0400

y22+2yet+(y+et)dy/dt=0\frac{y^2}{2}+2ye^t+(y+e^t)dy/dt=0

(y22+2yet)dt+(y+et)dy=0(\frac{y^2}{2}+2ye^t)dt+(y+e^t)dy=0

P(t,y)=y22+2yetP(t,y)=\frac{y^2}{2}+2ye^t

Q(t,y)=y+etQ(t,y)=y+e^t

P/y=y+2et∂P/∂y=y+2e^t

Q/t=et∂Q/∂t=e^t

P/yQ/t∂P/∂y \not = ∂Q/∂t, so equation is not exact.

Let's find an integrating factor μ\mu :

ξ=P/yQ/tQ=y+2etety+et=y+ety+et=1\xi=\frac{∂P/∂y - ∂Q/∂t}{Q}=\frac{y+2e^t-e^t}{y+e^t}=\frac{y+e^t}{y+e^t}=1

ξ\xi is a function of t only (not y), let it be denoted by ξ(t)\xi (t). Then

μ=eξ(t)dt=edt=et\mu=e^{\int\xi(t)dt}=e^{\int dt}=e^t

Differential equation with integrating factor:

(y2et2+2ye2t)dt+(yet+e2t)dy=0(\frac{y^2e^t}{2}+2ye^{2t})dt+(ye^t+e^{2t})dy=0

P1(t,y)=y2et2+2ye2tP_1(t,y)=\frac{y^2e^t}{2}+2ye^{2t}

Q1(t,y)=yet+e2tQ_1(t,y)=ye^t+e^{2t}

P1/y=yet+2e2t∂P_1/∂y=ye^t+2e^{2t}

Q1/t=yet+2e2t∂Q_1/∂t=ye^t+2e^{2t}

P1/y=Q1/t∂P_1/∂y = ∂Q_1/∂t, so equation (y2et2+2ye2t)dt+(yet+e2t)dy=0(\frac{y^2e^t}{2}+2ye^{2t})dt+(ye^t+e^{2t})dy=0 is exact.

So, solution of this equation f(t,y)f(t,y) and f(t,y)/t=P1(t,y)∂f(t,y)/∂t=P_1(t,y) and f(t,y)/y=Q1(t,y)∂f(t,y)/∂y=Q_1(t,y).

f(t,y)=P1(t,y)dt+ϕ(y)f(t,y)=\int P_1(t,y)dt +\phi(y)

f(t,y)=(y2et2+2ye2t)dt+ϕ(y)=y2et2+ye2t+ϕ(y)f(t,y)=\int (\frac{y^2e^t}{2}+2ye^{2t})dt +\phi(y)=\frac{y^2e^t}{2}+ye^{2t} +\phi(y)

f(t,y)/y=(y2et2+ye2t+ϕ(y))=yet+e2t+ϕ(y)=Q1(t,y)∂f(t,y)/∂y=(\frac{y^2e^t}{2}+ye^{2t} +\phi(y))'=ye^{t}+e^{2t}+\phi'(y) =Q_1(t,y)

yet+e2t+ϕ(y)=yet+e2tye^{t}+e^{2t}+\phi'(y) =ye^t+e^{2t}

ϕ(y)=0\phi'(y) =0

ϕ(y)=C1\phi(y) =C_1

f(t,y)=y2et2+ye2t+C1f(t,y)=\frac{y^2e^t}{2}+ye^{2t} +C_1

So, a solution of the differential equation is

f(t,y)=C2f(t,y)=C_2

y2et2+ye2t+C1=C2,C=C2C1,\frac{y^2e^t}{2}+ye^{2t} +C_1=C_2,\, C=C_2-C_1,

y2et2+ye2t=C\frac{y^2e^t}{2}+ye^{2t} =C


Answer: y2et2+ye2t=C\frac{y^2e^t}{2}+ye^{2t} =C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS