Question #92949
Solve the following boundary value problem .
uₙ = uₓₓ , 0<x<1 , n > 0
u(0,n) = u(l, n) = 0
u(x,0) = x (l - x) , 0 ≤ x ≤1
1
Expert's answer
2019-08-26T08:40:46-0400

SOLUTION

We use the method of separation of variables. We are looking for a solution in the form:


u(x,n)=X(x)N(n)u(x,n)=X(x)N(n)

Then,


{un=n(X(x)N(n))=X(x)N(n)uxx=2x2(X(x)N(n))=X(x)N(n)\left\{\begin{array}{c} u_n=\displaystyle\frac{\partial}{\partial n}\left(X(x)N(n)\right)=X(x)N'(n)\\[0.5cm] u_{xx}=\displaystyle\frac{\partial^2}{\partial x^2}\left(X(x)N(n)\right)=X''(x)N(n) \end{array}\right.\longrightarrow


un=uxxequivalentX(x)N(n)=X(x)N(n)1X(x)N(n)u_n=u_{xx}\,\,\,equivalent\,\,\,\\[0.3cm] X(x)N'(n)=X''(x)N(n)\left|\cdot\frac{1}{X(x)N(n)}\right.


N(n)N(n)=X(x)X(x)=λ\frac{N'(n)}{N(n)}=\frac{X''(x)}{X(x)}=-\lambda

We arrive at the Sturm-Liouville problem


{X(x)+λX(x)=0X(0)=X(l)=0\left\{\begin{array}{c} X''(x)+\lambda X(x)=0\\[0.3cm] X(0)=X(l)=0 \end{array}\right.

We are looking for a solution in the form



X(x)=ekxX(x)=k2ekxX(x)=e^{kx}\rightarrow X''(x)=k^2\cdot e^{kx}

X(x)+λX(x)=0k2ekx+λekx=0X''(x)+\lambda X(x)=0\rightarrow k^2\cdot e^{kx}+\lambda\cdot e^{kx}=0\rightarrow


ekx(k2+λ)=0k2=λ[k1=λ=iλk2=λ=iλe^{kx}\left(k^2+\lambda\right)=0\rightarrow k^2=-\lambda\rightarrow\\[0.3cm] \left[\begin{array}{c} k_1=\sqrt{-\lambda}=i\sqrt{\lambda}\\[0.3cm] k_2=-\sqrt{-\lambda}=-i\sqrt{\lambda} \end{array}\right.

Conclusion,


X(x)=C1eixλ+C2eixλorX(x)=Acos(xλ)+Bsin(xλ)X(x)=C_1e^{ix\sqrt{\lambda}}+C_2e^{-ix\sqrt{\lambda}}\\[0.3cm] or\\[0.3cm] X(x)=A\cos\left(x\sqrt{\lambda}\right)+B\sin\left(x\sqrt{\lambda}\right)

We use the boundary conditions



X(0)=0=Acos(0λ)+Bsin(0λ)A=0X(l)=0=Bsin(lλ)sin(lλ)=0lλ=kπ,k=1,2,3,λk=(kπl)2,k=1,2,3,X(0)=0=A\cos\left(0\sqrt{\lambda}\right)+B\sin\left(0\sqrt{\lambda}\right)\\[0.2cm] \boxed{A=0}\\[0.2cm] X(l)=0=B\sin\left(l\sqrt{\lambda}\right)\rightarrow \sin\left(l\sqrt{\lambda}\right)=0\\[0.2cm] l\sqrt{\lambda}=k\pi,\,\,\,k=1,2,3,\ldots\\[0.2cm] \lambda_k=\left(\frac{k\pi}{l}\right)^2,\,\,\,k=1,2,3,\ldots

Conclusion,



{Xk(x)=Bksin(xkπl)λk=(kπl)2,k=1,2,3,\left\{\begin{array}{c} X_k(x)=B_k\sin\left(\displaystyle\frac{xk\pi}{l}\right)\\[0.3cm] \lambda_k=\left(\displaystyle\frac{k\pi}{l}\right)^2,\,\,\,k=1,2,3,\ldots \end{array}\right.

Then,



N(n)N(n)=λkdN(n)N(n)=λkdnNk(n)=eλkn\frac{N'(n)}{N(n)}=-\lambda_k\rightarrow\frac{dN(n)}{N(n)}=-\lambda_kdn\rightarrow\\[0.3cm] \boxed{N_k(n)=e^{-\lambda_kn}}

Conclusion,

The particular solution has the form


uk(x,n)=Xk(x)Nk(n)=Bksin(xkπl)eλknu_k(x,n)=X_k(x)N_k(n)=B_k\sin\left(\displaystyle\frac{xk\pi}{l}\right)e^{-\lambda_kn}

General solution is



u(x,n)=k=1uk(x,n)=k=1Bksin(xkπl)eλknu(x,n)=\sum_{k=1}^\infty u_k(x,n)=\sum_{k=1}^\infty B_k\sin\left(\displaystyle\frac{xk\pi}{l}\right)e^{-\lambda_kn}

It remains to determine the constants BkB_k , for this we use the initial condition



u(x,0)=x(lx)=k=1Bksin(xkπl)0l(x(lx)sin(xmπl))dx==k=1Bk0lsin(xmπl)sin(xkπl)dxBml2=I1+I2u(x,0)=x(l-x)=\sum_{k=1}^\infty B_k\sin\left(\displaystyle\frac{xk\pi}{l}\right)\\[0.3cm] \int_0^l\left(x(l-x)\sin\left(\displaystyle\frac{xm\pi}{l}\right)\right)dx=\\[0.3cm] =\sum_{k=1}^\infty B_k\int_0^l\sin\left(\displaystyle\frac{xm\pi}{l}\right)\sin\left(\displaystyle\frac{xk\pi}{l}\right)dx\\[0.3cm] B_m\frac{l}{2}=I_1+I_2

where



I1=l0l(xsin(xmπl))dx=(1)ml3mπI2=0l(x2sin(xmπl))dx=l3(2(2m2π2)(1)m)m3π3I1+I2=(1)ml3mπ+l3(2(2m2π2)(1)m)m3π3==l3(2(2m2π2)(1)m)m2π2(1)m)m3π3==l3(22(1)m)m3π3=2l3(1(1)m)m3π3I_1=l\int_0^l\left(x\sin\left(\displaystyle\frac{xm\pi}{l}\right)\right)dx=-(-1)^m\frac{l^3}{m\pi}\\[0.3cm] I_2=-\int_0^l\left(x^2\sin\left(\displaystyle\frac{xm\pi}{l}\right)\right)dx= \frac{l^3(2-(2-m^2\pi^2)(-1)^m)}{m^3\pi^3}\\[0.3cm] I_1+I_2=-(-1)^m\frac{l^3}{m\pi}+\frac{l^3(2-(2-m^2\pi^2)(-1)^m)}{m^3\pi^3}=\\[0.3cm] =\frac{l^3(2-(2-m^2\pi^2)(-1)^m)-m^2\pi^2(-1)^m)}{m^3\pi^3}=\\[0.3cm] =\frac{l^3(2-2\cdot(-1)^m)}{m^3\pi^3}=\frac{2l^3(1-(-1)^m)}{m^3\pi^3}

Then,



Bml2=2l3(1(1)m)m3π3Bm=4l2(1(1)m)m3π3B_m\frac{l}{2}=\frac{2l^3(1-(-1)^m)}{m^3\pi^3}\rightarrow \boxed{B_m=\frac{4l^2(1-(-1)^m)}{m^3\pi^3}}

Conclusion,


u(x,n)=k=14l2(1(1)k)k3π3sin(xkπl)eλknu(x,n)=\sum_{k=1}^\infty \frac{4l^2(1-(-1)^k)}{k^3\pi^3}\sin\left(\displaystyle\frac{xk\pi}{l}\right)e^{-\lambda_kn}

ANSWER



u(x,n)=k=14l2(1(1)k)k3π3sin(xkπl)eλknλk=(kπl)2,k=1,2,3,u(x,n)=\sum_{k=1}^\infty \frac{4l^2(1-(-1)^k)}{k^3\pi^3}\sin\left(\displaystyle\frac{xk\pi}{l}\right)e^{-\lambda_kn}\\[0.3cm] \lambda_k=\left(\frac{k\pi}{l}\right)^2,\,\,\,k=1,2,3,\ldots


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS