SOLUTION
We use the method of separation of variables. We are looking for a solution in the form:
u(x,n)=X(x)N(n) Then,
⎩⎨⎧un=∂n∂(X(x)N(n))=X(x)N′(n)uxx=∂x2∂2(X(x)N(n))=X′′(x)N(n)⟶
un=uxxequivalentX(x)N′(n)=X′′(x)N(n)∣∣⋅X(x)N(n)1
N(n)N′(n)=X(x)X′′(x)=−λ We arrive at the Sturm-Liouville problem
{X′′(x)+λX(x)=0X(0)=X(l)=0 We are looking for a solution in the form
X(x)=ekx→X′′(x)=k2⋅ekx
X′′(x)+λX(x)=0→k2⋅ekx+λ⋅ekx=0→
ekx(k2+λ)=0→k2=−λ→⎣⎡k1=−λ=iλk2=−−λ=−iλ Conclusion,
X(x)=C1eixλ+C2e−ixλorX(x)=Acos(xλ)+Bsin(xλ) We use the boundary conditions
X(0)=0=Acos(0λ)+Bsin(0λ)A=0X(l)=0=Bsin(lλ)→sin(lλ)=0lλ=kπ,k=1,2,3,…λk=(lkπ)2,k=1,2,3,… Conclusion,
⎩⎨⎧Xk(x)=Bksin(lxkπ)λk=(lkπ)2,k=1,2,3,… Then,
N(n)N′(n)=−λk→N(n)dN(n)=−λkdn→Nk(n)=e−λkn Conclusion,
The particular solution has the form
uk(x,n)=Xk(x)Nk(n)=Bksin(lxkπ)e−λkn General solution is
u(x,n)=k=1∑∞uk(x,n)=k=1∑∞Bksin(lxkπ)e−λkn It remains to determine the constants Bk , for this we use the initial condition
u(x,0)=x(l−x)=k=1∑∞Bksin(lxkπ)∫0l(x(l−x)sin(lxmπ))dx==k=1∑∞Bk∫0lsin(lxmπ)sin(lxkπ)dxBm2l=I1+I2 where
I1=l∫0l(xsin(lxmπ))dx=−(−1)mmπl3I2=−∫0l(x2sin(lxmπ))dx=m3π3l3(2−(2−m2π2)(−1)m)I1+I2=−(−1)mmπl3+m3π3l3(2−(2−m2π2)(−1)m)==m3π3l3(2−(2−m2π2)(−1)m)−m2π2(−1)m)==m3π3l3(2−2⋅(−1)m)=m3π32l3(1−(−1)m) Then,
Bm2l=m3π32l3(1−(−1)m)→Bm=m3π34l2(1−(−1)m) Conclusion,
u(x,n)=k=1∑∞k3π34l2(1−(−1)k)sin(lxkπ)e−λkn ANSWER
u(x,n)=k=1∑∞k3π34l2(1−(−1)k)sin(lxkπ)e−λknλk=(lkπ)2,k=1,2,3,…
Comments