SOLUTION
We use the method of separation of variables. We are looking for a solution in the form:
u ( x , n ) = X ( x ) N ( n ) u(x,n)=X(x)N(n) u ( x , n ) = X ( x ) N ( n ) Then,
{ u n = ∂ ∂ n ( X ( x ) N ( n ) ) = X ( x ) N ′ ( n ) u x x = ∂ 2 ∂ x 2 ( X ( x ) N ( n ) ) = X ′ ′ ( x ) N ( n ) ⟶ \left\{\begin{array}{c}
u_n=\displaystyle\frac{\partial}{\partial n}\left(X(x)N(n)\right)=X(x)N'(n)\\[0.5cm]
u_{xx}=\displaystyle\frac{\partial^2}{\partial x^2}\left(X(x)N(n)\right)=X''(x)N(n)
\end{array}\right.\longrightarrow ⎩ ⎨ ⎧ u n = ∂ n ∂ ( X ( x ) N ( n ) ) = X ( x ) N ′ ( n ) u xx = ∂ x 2 ∂ 2 ( X ( x ) N ( n ) ) = X ′′ ( x ) N ( n ) ⟶
u n = u x x e q u i v a l e n t X ( x ) N ′ ( n ) = X ′ ′ ( x ) N ( n ) ∣ ⋅ 1 X ( x ) N ( n ) u_n=u_{xx}\,\,\,equivalent\,\,\,\\[0.3cm]
X(x)N'(n)=X''(x)N(n)\left|\cdot\frac{1}{X(x)N(n)}\right. u n = u xx e q u i v a l e n t X ( x ) N ′ ( n ) = X ′′ ( x ) N ( n ) ∣ ∣ ⋅ X ( x ) N ( n ) 1
N ′ ( n ) N ( n ) = X ′ ′ ( x ) X ( x ) = − λ \frac{N'(n)}{N(n)}=\frac{X''(x)}{X(x)}=-\lambda N ( n ) N ′ ( n ) = X ( x ) X ′′ ( x ) = − λ We arrive at the Sturm-Liouville problem
{ X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = X ( l ) = 0 \left\{\begin{array}{c}
X''(x)+\lambda X(x)=0\\[0.3cm]
X(0)=X(l)=0
\end{array}\right. { X ′′ ( x ) + λ X ( x ) = 0 X ( 0 ) = X ( l ) = 0 We are looking for a solution in the form
X ( x ) = e k x → X ′ ′ ( x ) = k 2 ⋅ e k x X(x)=e^{kx}\rightarrow X''(x)=k^2\cdot e^{kx} X ( x ) = e k x → X ′′ ( x ) = k 2 ⋅ e k x
X ′ ′ ( x ) + λ X ( x ) = 0 → k 2 ⋅ e k x + λ ⋅ e k x = 0 → X''(x)+\lambda X(x)=0\rightarrow k^2\cdot e^{kx}+\lambda\cdot e^{kx}=0\rightarrow X ′′ ( x ) + λ X ( x ) = 0 → k 2 ⋅ e k x + λ ⋅ e k x = 0 →
e k x ( k 2 + λ ) = 0 → k 2 = − λ → [ k 1 = − λ = i λ k 2 = − − λ = − i λ e^{kx}\left(k^2+\lambda\right)=0\rightarrow k^2=-\lambda\rightarrow\\[0.3cm]
\left[\begin{array}{c}
k_1=\sqrt{-\lambda}=i\sqrt{\lambda}\\[0.3cm]
k_2=-\sqrt{-\lambda}=-i\sqrt{\lambda}
\end{array}\right. e k x ( k 2 + λ ) = 0 → k 2 = − λ → ⎣ ⎡ k 1 = − λ = i λ k 2 = − − λ = − i λ Conclusion,
X ( x ) = C 1 e i x λ + C 2 e − i x λ o r X ( x ) = A cos ( x λ ) + B sin ( x λ ) X(x)=C_1e^{ix\sqrt{\lambda}}+C_2e^{-ix\sqrt{\lambda}}\\[0.3cm]
or\\[0.3cm]
X(x)=A\cos\left(x\sqrt{\lambda}\right)+B\sin\left(x\sqrt{\lambda}\right) X ( x ) = C 1 e i x λ + C 2 e − i x λ or X ( x ) = A cos ( x λ ) + B sin ( x λ ) We use the boundary conditions
X ( 0 ) = 0 = A cos ( 0 λ ) + B sin ( 0 λ ) A = 0 X ( l ) = 0 = B sin ( l λ ) → sin ( l λ ) = 0 l λ = k π , k = 1 , 2 , 3 , … λ k = ( k π l ) 2 , k = 1 , 2 , 3 , … X(0)=0=A\cos\left(0\sqrt{\lambda}\right)+B\sin\left(0\sqrt{\lambda}\right)\\[0.2cm]
\boxed{A=0}\\[0.2cm]
X(l)=0=B\sin\left(l\sqrt{\lambda}\right)\rightarrow \sin\left(l\sqrt{\lambda}\right)=0\\[0.2cm]
l\sqrt{\lambda}=k\pi,\,\,\,k=1,2,3,\ldots\\[0.2cm]
\lambda_k=\left(\frac{k\pi}{l}\right)^2,\,\,\,k=1,2,3,\ldots X ( 0 ) = 0 = A cos ( 0 λ ) + B sin ( 0 λ ) A = 0 X ( l ) = 0 = B sin ( l λ ) → sin ( l λ ) = 0 l λ = kπ , k = 1 , 2 , 3 , … λ k = ( l kπ ) 2 , k = 1 , 2 , 3 , … Conclusion,
{ X k ( x ) = B k sin ( x k π l ) λ k = ( k π l ) 2 , k = 1 , 2 , 3 , … \left\{\begin{array}{c}
X_k(x)=B_k\sin\left(\displaystyle\frac{xk\pi}{l}\right)\\[0.3cm]
\lambda_k=\left(\displaystyle\frac{k\pi}{l}\right)^2,\,\,\,k=1,2,3,\ldots
\end{array}\right. ⎩ ⎨ ⎧ X k ( x ) = B k sin ( l x kπ ) λ k = ( l kπ ) 2 , k = 1 , 2 , 3 , … Then,
N ′ ( n ) N ( n ) = − λ k → d N ( n ) N ( n ) = − λ k d n → N k ( n ) = e − λ k n \frac{N'(n)}{N(n)}=-\lambda_k\rightarrow\frac{dN(n)}{N(n)}=-\lambda_kdn\rightarrow\\[0.3cm]
\boxed{N_k(n)=e^{-\lambda_kn}} N ( n ) N ′ ( n ) = − λ k → N ( n ) d N ( n ) = − λ k d n → N k ( n ) = e − λ k n Conclusion,
The particular solution has the form
u k ( x , n ) = X k ( x ) N k ( n ) = B k sin ( x k π l ) e − λ k n u_k(x,n)=X_k(x)N_k(n)=B_k\sin\left(\displaystyle\frac{xk\pi}{l}\right)e^{-\lambda_kn} u k ( x , n ) = X k ( x ) N k ( n ) = B k sin ( l x kπ ) e − λ k n General solution is
u ( x , n ) = ∑ k = 1 ∞ u k ( x , n ) = ∑ k = 1 ∞ B k sin ( x k π l ) e − λ k n u(x,n)=\sum_{k=1}^\infty u_k(x,n)=\sum_{k=1}^\infty B_k\sin\left(\displaystyle\frac{xk\pi}{l}\right)e^{-\lambda_kn} u ( x , n ) = k = 1 ∑ ∞ u k ( x , n ) = k = 1 ∑ ∞ B k sin ( l x kπ ) e − λ k n It remains to determine the constants B k B_k B k , for this we use the initial condition
u ( x , 0 ) = x ( l − x ) = ∑ k = 1 ∞ B k sin ( x k π l ) ∫ 0 l ( x ( l − x ) sin ( x m π l ) ) d x = = ∑ k = 1 ∞ B k ∫ 0 l sin ( x m π l ) sin ( x k π l ) d x B m l 2 = I 1 + I 2 u(x,0)=x(l-x)=\sum_{k=1}^\infty B_k\sin\left(\displaystyle\frac{xk\pi}{l}\right)\\[0.3cm]
\int_0^l\left(x(l-x)\sin\left(\displaystyle\frac{xm\pi}{l}\right)\right)dx=\\[0.3cm]
=\sum_{k=1}^\infty B_k\int_0^l\sin\left(\displaystyle\frac{xm\pi}{l}\right)\sin\left(\displaystyle\frac{xk\pi}{l}\right)dx\\[0.3cm]
B_m\frac{l}{2}=I_1+I_2 u ( x , 0 ) = x ( l − x ) = k = 1 ∑ ∞ B k sin ( l x kπ ) ∫ 0 l ( x ( l − x ) sin ( l x mπ ) ) d x = = k = 1 ∑ ∞ B k ∫ 0 l sin ( l x mπ ) sin ( l x kπ ) d x B m 2 l = I 1 + I 2 where
I 1 = l ∫ 0 l ( x sin ( x m π l ) ) d x = − ( − 1 ) m l 3 m π I 2 = − ∫ 0 l ( x 2 sin ( x m π l ) ) d x = l 3 ( 2 − ( 2 − m 2 π 2 ) ( − 1 ) m ) m 3 π 3 I 1 + I 2 = − ( − 1 ) m l 3 m π + l 3 ( 2 − ( 2 − m 2 π 2 ) ( − 1 ) m ) m 3 π 3 = = l 3 ( 2 − ( 2 − m 2 π 2 ) ( − 1 ) m ) − m 2 π 2 ( − 1 ) m ) m 3 π 3 = = l 3 ( 2 − 2 ⋅ ( − 1 ) m ) m 3 π 3 = 2 l 3 ( 1 − ( − 1 ) m ) m 3 π 3 I_1=l\int_0^l\left(x\sin\left(\displaystyle\frac{xm\pi}{l}\right)\right)dx=-(-1)^m\frac{l^3}{m\pi}\\[0.3cm]
I_2=-\int_0^l\left(x^2\sin\left(\displaystyle\frac{xm\pi}{l}\right)\right)dx=
\frac{l^3(2-(2-m^2\pi^2)(-1)^m)}{m^3\pi^3}\\[0.3cm]
I_1+I_2=-(-1)^m\frac{l^3}{m\pi}+\frac{l^3(2-(2-m^2\pi^2)(-1)^m)}{m^3\pi^3}=\\[0.3cm]
=\frac{l^3(2-(2-m^2\pi^2)(-1)^m)-m^2\pi^2(-1)^m)}{m^3\pi^3}=\\[0.3cm]
=\frac{l^3(2-2\cdot(-1)^m)}{m^3\pi^3}=\frac{2l^3(1-(-1)^m)}{m^3\pi^3} I 1 = l ∫ 0 l ( x sin ( l x mπ ) ) d x = − ( − 1 ) m mπ l 3 I 2 = − ∫ 0 l ( x 2 sin ( l x mπ ) ) d x = m 3 π 3 l 3 ( 2 − ( 2 − m 2 π 2 ) ( − 1 ) m ) I 1 + I 2 = − ( − 1 ) m mπ l 3 + m 3 π 3 l 3 ( 2 − ( 2 − m 2 π 2 ) ( − 1 ) m ) = = m 3 π 3 l 3 ( 2 − ( 2 − m 2 π 2 ) ( − 1 ) m ) − m 2 π 2 ( − 1 ) m ) = = m 3 π 3 l 3 ( 2 − 2 ⋅ ( − 1 ) m ) = m 3 π 3 2 l 3 ( 1 − ( − 1 ) m ) Then,
B m l 2 = 2 l 3 ( 1 − ( − 1 ) m ) m 3 π 3 → B m = 4 l 2 ( 1 − ( − 1 ) m ) m 3 π 3 B_m\frac{l}{2}=\frac{2l^3(1-(-1)^m)}{m^3\pi^3}\rightarrow
\boxed{B_m=\frac{4l^2(1-(-1)^m)}{m^3\pi^3}} B m 2 l = m 3 π 3 2 l 3 ( 1 − ( − 1 ) m ) → B m = m 3 π 3 4 l 2 ( 1 − ( − 1 ) m ) Conclusion,
u ( x , n ) = ∑ k = 1 ∞ 4 l 2 ( 1 − ( − 1 ) k ) k 3 π 3 sin ( x k π l ) e − λ k n u(x,n)=\sum_{k=1}^\infty \frac{4l^2(1-(-1)^k)}{k^3\pi^3}\sin\left(\displaystyle\frac{xk\pi}{l}\right)e^{-\lambda_kn} u ( x , n ) = k = 1 ∑ ∞ k 3 π 3 4 l 2 ( 1 − ( − 1 ) k ) sin ( l x kπ ) e − λ k n ANSWER
u ( x , n ) = ∑ k = 1 ∞ 4 l 2 ( 1 − ( − 1 ) k ) k 3 π 3 sin ( x k π l ) e − λ k n λ k = ( k π l ) 2 , k = 1 , 2 , 3 , … u(x,n)=\sum_{k=1}^\infty \frac{4l^2(1-(-1)^k)}{k^3\pi^3}\sin\left(\displaystyle\frac{xk\pi}{l}\right)e^{-\lambda_kn}\\[0.3cm]
\lambda_k=\left(\frac{k\pi}{l}\right)^2,\,\,\,k=1,2,3,\ldots u ( x , n ) = k = 1 ∑ ∞ k 3 π 3 4 l 2 ( 1 − ( − 1 ) k ) sin ( l x kπ ) e − λ k n λ k = ( l kπ ) 2 , k = 1 , 2 , 3 , …
Comments