u=x+y+z,v=x2+y2−z2. F(u,v)=0.0=Fx=∂u∂F∂x∂u+∂v∂F∂x∂v.0=Fy=∂u∂F∂y∂u+∂v∂F∂y∂v.Let ∂x∂u=∂x∂u∂x∂x+∂y∂u∂x∂y+∂z∂u∂x∂z=1+p.Let ∂y∂u=∂x∂u∂y∂x+∂y∂u∂y∂y+∂z∂u∂y∂z=1+q.∂x∂v=2x−2zp.∂y∂v=2y−2zq.Fx=∂u∂F(1+p)+∂v∂F(2x−2pz)=0.Fy=∂u∂F(1+q)+∂u∂F(2y−2qz)=0.Eliminating ∂u∂Fand∂v∂Fwe get:(1+p)(2y−2qz)−(1+q)(2x−2pz)=0.y−qz+yp−qpz−x+pz−qx+qpz=0.p(y+z)−q(x+z)=x−y −the resulting equation.
Comments