Question #92860
Find the general solution of the differential equation .
y²/2 + 2yexp(t) + (y+exp(t))dy/dt = 0
1
Expert's answer
2019-08-22T10:28:52-0400

y2/2+2yet+(y+et)y=0y^2/2+2ye^t+(y+e^t)y'=0

Multiply by 2

y2+4yet+2(y+et)y=0y^2+4ye^t+2(y+e^t)y'=0

y2+2yet+e2t+2(y+et)y+2yet+2e2t3e2t=0y^2+2ye^t+e^{2t}+2(y+e^t)y'+2ye^t+2e^{2t}-3e^{2t}=0

(y+et)2+2(y+et)y+2(y+et)et3e2t=0(y+e^t)^2+2(y+e^t)y'+2(y+e^t)e^t-3e^{2t}=0

(y+et)2+2(y+et)(y+et)=3e2t(y+e^t)^2+2(y+e^t)(y'+e^t)=3e^{2t}

Notice that

((y+et)2)=2(y+et)(y+et)((y+e^t)^2)'=2(y+e^t)(y'+e^t)

Let z=(y+et)2z=(y+e^t)^2

then

z+z=3e2tz+z'=3e^{2t}

Using an integrating factor

u(t)=e1dt=etu(t)=e^{\int1dt}=e^t

General solution is

z=et3e2tdt+Cet=e3t+Cetz=\frac{\intop e^t3e^{2t}dt+C}{e^t}=\frac{e^{3t}+C}{e^t}

(y+et)2=e3t+Cet(y+e^t)^2=\frac{e^{3t}+C}{e^t}

y+et=±e3t+Cety+e^t=\pm \sqrt{\frac{e^{3t}+C}{e^t}}

y=±e3t+Cetety=\pm \sqrt{\frac{e^{3t}+C}{e^t}}-e^t

Answer: y=±e3t+Cetety=\pm \sqrt{\frac{e^{3t}+C}{e^t}}-e^t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS