y 2 / 2 + 2 y e t + ( y + e t ) y ′ = 0 y^2/2+2ye^t+(y+e^t)y'=0 y 2 /2 + 2 y e t + ( y + e t ) y ′ = 0
Multiply by 2
y 2 + 4 y e t + 2 ( y + e t ) y ′ = 0 y^2+4ye^t+2(y+e^t)y'=0 y 2 + 4 y e t + 2 ( y + e t ) y ′ = 0
y 2 + 2 y e t + e 2 t + 2 ( y + e t ) y ′ + 2 y e t + 2 e 2 t − 3 e 2 t = 0 y^2+2ye^t+e^{2t}+2(y+e^t)y'+2ye^t+2e^{2t}-3e^{2t}=0 y 2 + 2 y e t + e 2 t + 2 ( y + e t ) y ′ + 2 y e t + 2 e 2 t − 3 e 2 t = 0
( y + e t ) 2 + 2 ( y + e t ) y ′ + 2 ( y + e t ) e t − 3 e 2 t = 0 (y+e^t)^2+2(y+e^t)y'+2(y+e^t)e^t-3e^{2t}=0 ( y + e t ) 2 + 2 ( y + e t ) y ′ + 2 ( y + e t ) e t − 3 e 2 t = 0
( y + e t ) 2 + 2 ( y + e t ) ( y ′ + e t ) = 3 e 2 t (y+e^t)^2+2(y+e^t)(y'+e^t)=3e^{2t} ( y + e t ) 2 + 2 ( y + e t ) ( y ′ + e t ) = 3 e 2 t
Notice that
( ( y + e t ) 2 ) ′ = 2 ( y + e t ) ( y ′ + e t ) ((y+e^t)^2)'=2(y+e^t)(y'+e^t) (( y + e t ) 2 ) ′ = 2 ( y + e t ) ( y ′ + e t )
Let z = ( y + e t ) 2 z=(y+e^t)^2 z = ( y + e t ) 2
then
z + z ′ = 3 e 2 t z+z'=3e^{2t} z + z ′ = 3 e 2 t
Using an integrating factor
u ( t ) = e ∫ 1 d t = e t u(t)=e^{\int1dt}=e^t u ( t ) = e ∫ 1 d t = e t
General solution is
z = ∫ e t 3 e 2 t d t + C e t = e 3 t + C e t z=\frac{\intop e^t3e^{2t}dt+C}{e^t}=\frac{e^{3t}+C}{e^t} z = e t ∫ e t 3 e 2 t d t + C = e t e 3 t + C
( y + e t ) 2 = e 3 t + C e t (y+e^t)^2=\frac{e^{3t}+C}{e^t} ( y + e t ) 2 = e t e 3 t + C
y + e t = ± e 3 t + C e t y+e^t=\pm \sqrt{\frac{e^{3t}+C}{e^t}} y + e t = ± e t e 3 t + C
y = ± e 3 t + C e t − e t y=\pm \sqrt{\frac{e^{3t}+C}{e^t}}-e^t y = ± e t e 3 t + C − e t
Answer: y = ± e 3 t + C e t − e t y=\pm \sqrt{\frac{e^{3t}+C}{e^t}}-e^t y = ± e t e 3 t + C − e t
Comments