y2/2+2yet+(y+et)y′=0
Multiply by 2
y2+4yet+2(y+et)y′=0
y2+2yet+e2t+2(y+et)y′+2yet+2e2t−3e2t=0
(y+et)2+2(y+et)y′+2(y+et)et−3e2t=0
(y+et)2+2(y+et)(y′+et)=3e2t
Notice that
((y+et)2)′=2(y+et)(y′+et)
Let z=(y+et)2
then
z+z′=3e2t
Using an integrating factor
u(t)=e∫1dt=et
General solution is
z=et∫et3e2tdt+C=ete3t+C
(y+et)2=ete3t+C
y+et=±ete3t+C
y=±ete3t+C−et
Answer: y=±ete3t+C−et
Comments