Let's make a substitution "y=exp(mx)"
"y'=my"
"y''=m^2y"
Hence
"y''+a(x)y'+b(x)y=m^2y+a(x)my+b(x)y"
Therefore, if
"m^2+am+b=0"
"y''+a(x)y'+b(x)y=0"
Which means y=exp(mx) is particular integral of the equation.
In the equation "(x-2)y''-(4x-7)y'+(4x-6)y=0"
"a=-\\frac{4x-7}{x-2};\\quad b=\\frac{4x-6}{x-2}"
Let's solve the eqation
"m^2+am+b=0"
"m^2-\\frac{4x-7}{x-2}m+\\frac{4x-6}{x-2}=0"
"m=\\frac{4x-7-\\sqrt{(4x-7)^2-4(x-2)(4x-6)}}{2(x-2)}=\\frac{4x-7-1}{2(x-2)}=2"
therefore "y=e^{2x}" is a particular integral of the equation
Comments
Leave a comment