Question #92856
Show that , for the DE
d²y/dx² + a(x) dy/dx+b(x)y=0

exp(mx) is a particular integral if m²+am+b=0 . Hence find the value of m so that exp(mx) is a particular integral of the equation
(x-2) d²y/dx² - (4x-7)dy/dx+(4x-6)y=0
1
Expert's answer
2019-08-19T13:36:55-0400

Let's make a substitution y=exp(mx)y=exp(mx)

y=myy'=my

y=m2yy''=m^2y

Hence

y+a(x)y+b(x)y=m2y+a(x)my+b(x)yy''+a(x)y'+b(x)y=m^2y+a(x)my+b(x)y

Therefore, if

m2+am+b=0m^2+am+b=0

y+a(x)y+b(x)y=0y''+a(x)y'+b(x)y=0

Which means y=exp(mx) is particular integral of the equation.  

In the equation (x2)y(4x7)y+(4x6)y=0(x-2)y''-(4x-7)y'+(4x-6)y=0

a=4x7x2;b=4x6x2a=-\frac{4x-7}{x-2};\quad b=\frac{4x-6}{x-2}

Let's solve the eqation

m2+am+b=0m^2+am+b=0

m24x7x2m+4x6x2=0m^2-\frac{4x-7}{x-2}m+\frac{4x-6}{x-2}=0

m=4x7(4x7)24(x2)(4x6)2(x2)=4x712(x2)=2m=\frac{4x-7-\sqrt{(4x-7)^2-4(x-2)(4x-6)}}{2(x-2)}=\frac{4x-7-1}{2(x-2)}=2

therefore y=e2xy=e^{2x} is a particular integral of the equation


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS