Question #92857
Solve the following differential equations.

(i) dx/y²(x-y) =dy/x²(x-y) =dz/z(x²+y²)

(ii) (yz+z²)dx - xzdy + xydz =0

(iii) (z+z³)cosx dx - (z+z³)dy + (1-z²) (y-sinx)dz =0
1
Expert's answer
2019-09-02T09:11:56-0400

I)dxy2(xy)=dyx2(xy)x2dx=y2dyx3y3=C3\frac{dx}{y^2(x-y)}=\frac{dy}{x^2(x-y)}\Rightarrow x^2dx=y^2dy\Rightarrow x^3-y^3=C^3 . We have dxy2(xy)=dzz(x2+y2)(x2+y2)y2(xy)dx=dzz.\frac{dx}{y^2(x-y)}=\frac{dz}{z(x^2+y^2)}\Rightarrow \frac{(x^2+y^2)}{y^2(x-y)}dx=\frac{dz}{z}. Let x=Ccosh23tx=C\cosh^\frac{2}{3}t and y=Csinh23ty=C\sinh^\frac{2}{3}t , then dx=2Csinhtdt3cosh13tdx=\frac{2C\sinh tdt}{3\cosh^\frac{1}{3}t} and (x2+y2)y2(xy)dx=\frac{(x^2+y^2)}{y^2(x-y)}dx= =C2(cosh43t+sinh43t)C2sinh43tC(cosh23tsinh23t)2Csinhtdt3cosh13t=23cosh43t+sinh43tsinh13tcosh13t(cosh23tsinh23t)dt=\frac{C^2(\cosh^\frac{4}{3}t+\sinh^\frac{4}{3}t)}{C^2\sinh^\frac{4}{3}t\cdot C(\cosh^\frac{2}{3}t-\sinh^\frac{2}{3}t)}\cdot\frac{2C\sinh tdt}{3\cosh^\frac{1}{3}t}=\frac{2}{3}\frac{\cosh^\frac{4}{3}t+\sinh^\frac{4}{3}t}{\sinh^\frac{1}{3}t\cosh^\frac{1}{3}t(\cosh^\frac{2}{3}t-\sinh^\frac{2}{3}t)}dt . Divide the numerator and denominator by cosh43t\cosh^\frac{4}{3}t : 23cosh43t+sinh43tsinh13tcosh13t(cosh23tsinh23t)dt=231+tanh43ttanh13t(1tanh23t)dt\frac{2}{3}\frac{\cosh^\frac{4}{3}t+\sinh^\frac{4}{3}t}{\sinh^\frac{1}{3}t\cosh^\frac{1}{3}t(\cosh^\frac{2}{3}t-\sinh^\frac{2}{3}t)}dt=\frac{2}{3}\frac{1+\tanh^\frac{4}{3}t}{\tanh^\frac{1}{3}t(1-\tanh^\frac{2}{3}t)}dt Make change of the variable: tanh23t=u\tanh^\frac{2}{3}t=u . So t=artanh(u32)t=artanh(u^\frac{3}{2}) and dt=11u332ududt=\frac{1}{1-u^3}\cdot\frac{3}{2}\sqrt{u}du . Then231+tanh43ttanh13t(1tanh23t)dt=231+u2u(1u)11u332udu=1+u2(1u)(1u3)du\frac{2}{3}\frac{1+\tanh^\frac{4}{3}t}{\tanh^\frac{1}{3}t(1-\tanh^\frac{2}{3}t)}dt=\frac{2}{3}\frac{1+u^2}{\sqrt{u}(1-u)}\cdot\frac{1}{1-u^3}\cdot\frac{3}{2}\sqrt{u}du=\frac{1+u^2}{(1-u)(1-u^3)}du Write the partial fraction decomposition of 1+u2(1u)(1u3)\frac{1+u^2}{(1-u)(1-u^3)} : 1+u2(1u)(1u3)=A1u+B(1u)2+Du+Eu2+u+1=\frac{1+u^2}{(1-u)(1-u^3)}=\frac{A}{1-u}+\frac{B}{(1-u)^2}+\frac{Du+E}{u^2+u+1}= =(AAu+B)(u2+u+1)+(Du+E)(1u2)(1u)2(u2+u+1)=\frac{(A-Au+B)(u^2+u+1)+(Du+E)(1-u^2)}{(1-u)^2(u^2+u+1)} (AAu+B)(u2+u+1)+(Du+E)(1u2)=(A+D)u3+(B2D+E)u2+(B+D2E)u+(A+B+E)(A-Au+B)(u^2+u+1)+(Du+E)(1-u^2)=(-A+D)u^3+(B-2D+E)u^2+(B+D-2E)u+(A+B+E) Equality of the polynoms (A+D)u3+(B2D+E)u2+(B+D2E)u+(A+B+E)(-A+D)u^3+(B-2D+E)u^2+(B+D-2E)u+(A+B+E) and 1+u21+u^2 gives us system of equations: {A+D=0B2D+E=1B+D2E=0A+B+E=1\begin{cases} -A+D=0\\ B-2D+E=1\\ B+D-2E=0\\ A+B+E=1 \end{cases} , where A=D=0,B=23A=D=0, B=\frac{2}{3} and E=13E=\frac{1}{3} . So 1+u2(1u)(1u3)=231(1u)2+131u2+u+1\frac{1+u^2}{(1-u)(1-u^3)}=\frac{2}{3}\frac{1}{(1-u)^2}+\frac{1}{3}\frac{1}{u^2+u+1} .(231(1u)2+131u2+u+1)du=231(1u)2du+131u2+u+1du=239arctan(23u+13)+23(1u)+F\int\bigl(\frac{2}{3}\frac{1}{(1-u)^2}+\frac{1}{3}\frac{1}{u^2+u+1}\bigr)du=\frac{2}{3}\int\frac{1}{(1-u)^2}du+\frac{1}{3}\int\frac{1}{u^2+u+1}du=\frac{2\sqrt{3}}{9}\arctan\bigl(\frac{2}{\sqrt{3}}u+\frac{1}{\sqrt{3}}\bigr)+\frac{2}{3(1-u)}+F .Since 1+u2(1u)(1u3)du=dzz\frac{1+u^2}{(1-u)(1-u^3)}du=\frac{dz}{z} , we have 239arctan(23u+13)+23(1u)+F=lnz\frac{2\sqrt{3}}{9}\arctan\bigl(\frac{2}{\sqrt{3}}u+\frac{1}{\sqrt{3}}\bigr)+\frac{2}{3(1-u)}+F = \ln |z| or eFe239arctan(23u+13)+23(1u)=ze^Fe^{\frac{2\sqrt{3}}{9}\arctan\bigl(\frac{2}{\sqrt{3}}u+\frac{1}{\sqrt{3}}\bigr)+\frac{2}{3(1-u)}} = |z| . That is z=eFe239arctan(23u+13)+23(1u)z=e^Fe^{\frac{2\sqrt{3}}{9}\arctan\bigl(\frac{2}{\sqrt{3}}u+\frac{1}{\sqrt{3}}\bigr)+\frac{2}{3(1-u)}} or z=eFe239arctan(23u+13)+23(1u)z=-e^Fe^{\frac{2\sqrt{3}}{9}\arctan\bigl(\frac{2}{\sqrt{3}}u+\frac{1}{\sqrt{3}}\bigr)+\frac{2}{3(1-u)}} . Union of these 2 cases is z=Ge239arctan(23u+13)+23(1u)z=Ge^{\frac{2\sqrt{3}}{9}\arctan\bigl(\frac{2}{\sqrt{3}}u+\frac{1}{\sqrt{3}}\bigr)+\frac{2}{3(1-u)}} . Remembering that u=tanh23tu=\tanh^\frac{2}{3}t , we can write z=Ge239arctan(23tanh23t+13)+23(1tanh23t)z=Ge^{\frac{2\sqrt{3}}{9}\arctan\bigl(\frac{2}{\sqrt{3}}\tanh^\frac{2}{3}t+\frac{1}{\sqrt{3}}\bigr)+\frac{2}{3(1-\tanh^\frac{2}{3}t)}} Answer: x=Ccosh23tx=C\cosh^\frac{2}{3}t , y=Csinh23ty=C\sinh^\frac{2}{3}t and z=Ge239arctan(23tanh23t+13)+23(1tanh23t)z=Ge^{\frac{2\sqrt{3}}{9}\arctan\bigl(\frac{2}{\sqrt{3}}\tanh^\frac{2}{3}t+\frac{1}{\sqrt{3}}\bigr)+\frac{2}{3(1-\tanh^\frac{2}{3}t)}}

II)Dividing the equation by xy2xy^2 , we have (yz+z2)dxxy2+ydzzdyy2=0\frac{(yz+z^2)dx}{xy^2}+\frac{ydz-zdy}{y^2}=0 . Since ydzzdyy2=d(zy)\frac{ydz-zdy}{y^2}=d\bigl(\frac{z}{y}\bigr) , we can rewrite the equation: (zy+(zy)2)dxx+d(zy)=0\bigl(\frac{z}{y}+\bigl(\frac{z}{y}\bigr)^2\bigr)\frac{dx}{x}+d\bigl(\frac{z}{y}\bigr)=0 . After making change of the variables zy=t\frac{z}{y}=t , we have (t+t2)dxx+dt=0(t+t^2)\frac{dx}{x}+dt=0 or dxx=dtt+t2=dtt+1dtt\frac{dx}{x}=-\frac{dt}{t+t^2}=\frac{dt}{t+1}-\frac{dt}{t} . Solution of this equation is lnx+C=lnt+1lnt=lnt+1t\ln |x|+C=\ln |t+1|-\ln |t|=\ln\bigl |\frac{t+1}{t}\bigr| . Rewrite this equaliy: ecx=t+1te^c|x|=\bigl|\frac{t+1}{t}\bigr| . That is ecx=t+1te^cx=\frac{t+1}{t} or ecx=t+1t-e^cx=\frac{t+1}{t} . Union of these 2 cases is Dx=t+1tDx=\frac{t+1}{t} . Remembering that t=zyt=\frac{z}{y} , we have Dx=y+zzDx=\frac{y+z}{z}

Answer: Dx=y+zzDx=\frac{y+z}{z}

III)Rewrite the equation: (z+z3)(cosxdxdy)+(1z2)(ysinx)dz=0(z+z^3)(\cos xdx-dy)+(1-z^2)(y-\sin x)dz=0 . Note that cosxdxdy=d(sinxy)\cos xdx-dy=d(\sin x-y) .

So after making change of the variables sinxy=t\sin x-y=t , we have (z+z3)dt(1z2)tdz=0(z+z^3)dt-(1-z^2)tdz=0 or dtt=(1z2)dzz+z3\frac{dt}{t}=\frac{(1-z^2)dz}{z+z^3}

1z2z+z3=Az+Bz+Cz2+1=A(z2+1)+z(Bz+C)z3+z=(A+B)z2+Cz+Az3+z\frac{1-z^2}{z+z^3}=\frac{A}{z}+\frac{Bz+C}{z^2+1}=\frac{A(z^2+1)+z(Bz+C)}{z^3+z}=\frac{(A+B)z^2+Cz+A}{z^3+z} , so {A+B=1C=0A=1\begin{cases} A+B=-1\\ C=0\\ A=1 \end{cases} , where A=1,B=2,C=0A=1, B=-2, C=0

We have 1z2z+z3=1z2zz2+1\frac{1-z^2}{z+z^3}=\frac{1}{z}-\frac{2z}{z^2+1} . Since dtt=dzz2zdzz2+1\frac{dt}{t}=\frac{dz}{z}-\frac{2zdz}{z^2+1} , we have lnt=lnzlnz2+1+C\ln |t| = \ln |z| - \ln |z^2+1| +C or t=eCzz2+1|t|=e^C\bigl|\frac{z}{z^2+1}\bigr| . That is t=eCzz2+1t=e^C\frac{z}{z^2+1} or t=eCzz2+1t=-e^C\frac{z}{z^2+1} . Union of these 2 cases is t=Dzz2+1t=D\frac{z}{z^2+1} . Remembering that t=sinxyt=\sin x-y , we have sinxy=Dzz2+1\sin x-y=D\frac{z}{z^2+1}

Answer: sinxy=Dzz2+1\sin x-y=D\frac{z}{z^2+1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS