I)y2(x−y)dx=x2(x−y)dy⇒x2dx=y2dy⇒x3−y3=C3 . We have y2(x−y)dx=z(x2+y2)dz⇒y2(x−y)(x2+y2)dx=zdz. Let x=Ccosh32t and y=Csinh32t , then dx=3cosh31t2Csinhtdt and y2(x−y)(x2+y2)dx==C2sinh34t⋅C(cosh32t−sinh32t)C2(cosh34t+sinh34t)⋅3cosh31t2Csinhtdt=32sinh31tcosh31t(cosh32t−sinh32t)cosh34t+sinh34tdt . Divide the numerator and denominator by cosh34t : 32sinh31tcosh31t(cosh32t−sinh32t)cosh34t+sinh34tdt=32tanh31t(1−tanh32t)1+tanh34tdt Make change of the variable: tanh32t=u . So t=artanh(u23) and dt=1−u31⋅23udu . Then32tanh31t(1−tanh32t)1+tanh34tdt=32u(1−u)1+u2⋅1−u31⋅23udu=(1−u)(1−u3)1+u2du Write the partial fraction decomposition of (1−u)(1−u3)1+u2 : (1−u)(1−u3)1+u2=1−uA+(1−u)2B+u2+u+1Du+E==(1−u)2(u2+u+1)(A−Au+B)(u2+u+1)+(Du+E)(1−u2)(A−Au+B)(u2+u+1)+(Du+E)(1−u2)=(−A+D)u3+(B−2D+E)u2+(B+D−2E)u+(A+B+E) Equality of the polynoms (−A+D)u3+(B−2D+E)u2+(B+D−2E)u+(A+B+E) and 1+u2 gives us system of equations: ⎩⎨⎧−A+D=0B−2D+E=1B+D−2E=0A+B+E=1 , where A=D=0,B=32 and E=31 . So (1−u)(1−u3)1+u2=32(1−u)21+31u2+u+11 .∫(32(1−u)21+31u2+u+11)du=32∫(1−u)21du+31∫u2+u+11du=923arctan(32u+31)+3(1−u)2+F .Since (1−u)(1−u3)1+u2du=zdz , we have 923arctan(32u+31)+3(1−u)2+F=ln∣z∣ or eFe923arctan(32u+31)+3(1−u)2=∣z∣ . That is z=eFe923arctan(32u+31)+3(1−u)2 or z=−eFe923arctan(32u+31)+3(1−u)2 . Union of these 2 cases is z=Ge923arctan(32u+31)+3(1−u)2 . Remembering that u=tanh32t , we can write z=Ge923arctan(32tanh32t+31)+3(1−tanh32t)2 Answer: x=Ccosh32t , y=Csinh32t and z=Ge923arctan(32tanh32t+31)+3(1−tanh32t)2
II)Dividing the equation by xy2 , we have xy2(yz+z2)dx+y2ydz−zdy=0 . Since y2ydz−zdy=d(yz) , we can rewrite the equation: (yz+(yz)2)xdx+d(yz)=0 . After making change of the variables yz=t , we have (t+t2)xdx+dt=0 or xdx=−t+t2dt=t+1dt−tdt . Solution of this equation is ln∣x∣+C=ln∣t+1∣−ln∣t∣=ln∣∣tt+1∣∣ . Rewrite this equaliy: ec∣x∣=∣∣tt+1∣∣ . That is ecx=tt+1 or −ecx=tt+1 . Union of these 2 cases is Dx=tt+1 . Remembering that t=yz , we have Dx=zy+z
Answer: Dx=zy+z
III)Rewrite the equation: (z+z3)(cosxdx−dy)+(1−z2)(y−sinx)dz=0 . Note that cosxdx−dy=d(sinx−y) .
So after making change of the variables sinx−y=t , we have (z+z3)dt−(1−z2)tdz=0 or tdt=z+z3(1−z2)dz
z+z31−z2=zA+z2+1Bz+C=z3+zA(z2+1)+z(Bz+C)=z3+z(A+B)z2+Cz+A , so ⎩⎨⎧A+B=−1C=0A=1 , where A=1,B=−2,C=0
We have z+z31−z2=z1−z2+12z . Since tdt=zdz−z2+12zdz , we have ln∣t∣=ln∣z∣−ln∣z2+1∣+C or ∣t∣=eC∣∣z2+1z∣∣ . That is t=eCz2+1z or t=−eCz2+1z . Union of these 2 cases is t=Dz2+1z . Remembering that t=sinx−y , we have sinx−y=Dz2+1z
Comments