Let's find the solution in the form
"u(x,t) = X(x) T(t)""X T' = 8 X'' T""\\frac{T'}{T}(t) = 8\\frac{X''}{X}(x) = -8\\lambda = \\mathrm{const}"where lambda is an unknown constant.
From the boundary conditions
"X'' + \\lambda X = 0 \\qquad X(0) = X(5) = 0""X(x) = C \\sin \\frac{n \\pi x}{5} \\qquad \\lambda = \\bigg(\\frac{\\pi n}{5}\\bigg)^2"where n is integer.
Hence
"T' = -8\\lambda T \\rightarrow T(t) = C \\exp(-8\\lambda t)"The heat equation is linear, so the solution can be written in the form
"u(x,t) = \\sum_{n=1}^{\\infty} C_n X_n (x) T_n(t)"where Cn are constants determined from the initial conditions and Xn, Tn are the functions found above with the integer parameter n (for n = 0 X0(x)= 0).
From the initial conditions
"u(x,t) = 2 \\exp \\bigg(-8\\frac{\\pi^2 5^2}{5^2}t\\bigg)\\sin \\pi x - 4 \\bigg(-8\\frac{\\pi^2 10^2}{5^2}t\\bigg) \\sin 2\\pi x""u(x,t) = 2 e^{-8\\pi^2 t}\\sin \\pi x - 4 e^{-32\\pi^2 t} \\sin 2\\pi x"
Comments
Leave a comment