a) The initial value problem dy/dx=|y|1/2, y(0)=0 has unique solution.
Explanation.
Let us raise the each side of equation in square
(y')2=y21/4; <=> (y'-y/2)(y'+y/2)=0;
1) y'-y/2=0; dy/y=1/2; y=Cexp(x/2);
Hence,
y'=Cexp(x/2)/2;
Let us substitute it in the initial equation
Cexp(x/2)/2=|Cexp(x/2)/2|; C=|C|>=0.
y(0)=Cexp(0)=C; y(0)=0; <=> C=0; thus y=0exp(x/2)=0.
2) y'+y/2=0; dy/y=-1/2; y=Cexp(-x/2);
Hence,
y'=-Cexp(x/2)/2;
Let us substitute it in the initial equation
-Cexp(x/2)/2=|-Cexp(x/2)/2|; -C=|C|>=0; C<=0.
y(0)=Cexp(-0)=C; y(0)=0; <=> C=0; thus y=0exp(x/2)=0.
Hence, the initial value problem dy/dx=|y|1/2, y(0)=0 has unique solution y=0.
Comments
Leave a comment