The initial value value problem dy/dx=|y|1/2 ,y(0)=0 has
d) Two solutions.
Find the general solution of
"\\frac{dy}{dx}=\\sqrt{|y|}"
1) Let "y(x) \\leq 0" :
We can separate the variables:
"\\frac{dy}{\\sqrt{-y}}=dx""-\\frac{d(-y)}{\\sqrt{-y}}=dx"
Now, integrate the left-hand side dy and the right-hand side dx
"-\\int\\frac{d(-y)}{\\sqrt{-y}}=\\int dx \\\\""-2\\sqrt{-y}=x+C_1 \\\\"
"\\sqrt{-y}=-\\frac{1}{2}(x+C_1)"
"y=-\\frac{1}{4}(x+C_1)^2, x+C_1\\leq 0 \\text{ } (1)"
2) Let "y( x)\\geq 0" :
We can separate the variables:
"\\frac{dy}{\\sqrt{y}}=dx"Now, integrate the left-hand side dy and the right-hand side dx
"\\int\\frac{d(y)}{\\sqrt{y}}=\\int dx \\\\"
"\\sqrt{y}=\\frac{1}{2}(x+C_1)"
"y=\\frac{1}{4}(x+C_1)^2, x+C_1\\geq 0 \\text{ } (2)"
So there is our general solution (from (1), (2)):
To find the particular solution, substitute the initial condition values to obtain
"y(0)=0 \\Rightarrow 0=\\frac{1}{4}(0+C_1)^2, \\Rightarrow C_1=0"So, the particular solution that satisfies the initial condition is
"y=-\\frac{1}{4}x^2, x \\geq0 \\\\\ny=-\\frac{1}{4}x^2, x \\leq 0"But the solution to equality is "y = 0" , which also satisfies the condition "y(0)=0" .
The initial value value problem dy/dx=|y|1/2 ,y(0)=0 has Two solutions:
And
"2) \\text{ } y= 0 ."
Comments
Leave a comment