"u=a_1u_1+a_2u_2" is a solution of the differential equation
"u_1=e^x" is the first solution.
Make a substitution "u=u_1\\int y(x)dx=e^x\\int y(x)dx \\;\\;\\;\\;\\;\\;(1)"
"\\int y(x) = \\frac{u}{e^x}"
then
"=e^x \\int y(x)dx+e^xy(x)=e^x\\frac{u}{e^x}+e^xy(x)=u+e^xy(x)"
"u'' = (e^x\\int y(x)dx +e^xy(x))'="
"=u+e^xy(x)+e^xy(x)+e^xy'(x)=u+2e^xy(x)+e^xy'(x)"
then
"xu+2xe^xy+xe^xy'-u-2e^xy-e^xy'-xu-xe^xy+u=0 \\iff"
"e^x(x-1)y'+e^x(x-2)y=0 \\iff"
"(x-1)y'=(2-x)y \\iff""(x-1)\\frac{dy}{dx}=(2-x)y \\iff"
"\\frac{1}{y}dy=\\frac{2-x}{x-1}dx"
"\\int \\frac{1}{y}dy=\\int (\\frac{1}{x-1} -1)dx"
"ln|y|+C_1 = ln|x-1|-x+C_2 \\implies"
"y = C(x-1)e^x \\;\\;\\;\\;\\;\\;\\; (2)"
From (1) and (2) we get
"=C(e^x(x-1)-\\int e^xdx)=C(e^x(x-1)-e^x+C_3)=C(xe^x-2e^x+C_3)"
Then "u_1=e^x" is the first solution and "u_2=xe^x" is the second linearly independent solution.
Answer: a)"u_2=xe^x"
Comments
Leave a comment