Question #91482
Q.Choose the correct answer.
If one of the solution of the differential equation (x-1)u’’-xu’+u=0, x>1 is
U=ex, then which of the following is the second linearly independent solution?
a)u=xex
b) u=3ex
c)u=x
d)u=x2+1
1
Expert's answer
2019-07-10T11:48:29-0400
(x1)uxu+u=0,  x>1(x-1)u''-xu'+u=0, \;x>1

u=a1u1+a2u2u=a_1u_1+a_2u_2 is a solution of the differential equation

u1=exu_1=e^x is the first solution.

Make a substitution u=u1y(x)dx=exy(x)dx            (1)u=u_1\int y(x)dx=e^x\int y(x)dx \;\;\;\;\;\;(1)

y(x)=uex\int y(x) = \frac{u}{e^x}

then


u=(exy(x)dx)=exy(x)dx+ex(y(x)dx)=u'=(e^x \int y(x)dx)'=e^x\int y(x)dx + e^x(\int y(x)dx)'=

=exy(x)dx+exy(x)=exuex+exy(x)=u+exy(x)=e^x \int y(x)dx+e^xy(x)=e^x\frac{u}{e^x}+e^xy(x)=u+e^xy(x)

u=(exy(x)dx+exy(x))=u'' = (e^x\int y(x)dx +e^xy(x))'=

=u+exy(x)+exy(x)+exy(x)=u+2exy(x)+exy(x)=u+e^xy(x)+e^xy(x)+e^xy'(x)=u+2e^xy(x)+e^xy'(x)

then


(x1)(u+2exy+exy)x(u+exy)+u=0    (x-1)(u+2e^xy+e^xy')-x(u+e^xy)+u=0 \iff

xu+2xexy+xexyu2exyexyxuxexy+u=0    xu+2xe^xy+xe^xy'-u-2e^xy-e^xy'-xu-xe^xy+u=0 \iff

ex(x1)y+ex(x2)y=0    e^x(x-1)y'+e^x(x-2)y=0 \iff

(x1)y=(2x)y    (x-1)y'=(2-x)y \iff(x1)dydx=(2x)y    (x-1)\frac{dy}{dx}=(2-x)y \iff

1ydy=2xx1dx\frac{1}{y}dy=\frac{2-x}{x-1}dx

1ydy=(1x11)dx\int \frac{1}{y}dy=\int (\frac{1}{x-1} -1)dx

lny+C1=lnx1x+C2    ln|y|+C_1 = ln|x-1|-x+C_2 \implies

y=C(x1)ex              (2)y = C(x-1)e^x \;\;\;\;\;\;\; (2)

From (1) and (2) we get


u=Cex(x1)exdx=u=x1dv=exdxdu=dxv=ex=u=Ce^x\int (x-1)e^xdx=\begin{vmatrix} u=x-1 & dv=e^xdx \\ du=dx & v=e^x \end{vmatrix} =

=C(ex(x1)exdx)=C(ex(x1)ex+C3)=C(xex2ex+C3)=C(e^x(x-1)-\int e^xdx)=C(e^x(x-1)-e^x+C_3)=C(xe^x-2e^x+C_3)


Then u1=exu_1=e^x is the first solution and u2=xexu_2=xe^x is the second linearly independent solution.

Answer: a)u2=xexu_2=xe^x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS