( x − 1 ) u ′ ′ − x u ′ + u = 0 , x > 1 (x-1)u''-xu'+u=0, \;x>1 ( x − 1 ) u ′′ − x u ′ + u = 0 , x > 1 u = a 1 u 1 + a 2 u 2 u=a_1u_1+a_2u_2 u = a 1 u 1 + a 2 u 2 is a solution of the differential equation
u 1 = e x u_1=e^x u 1 = e x is the first solution.
Make a substitution u = u 1 ∫ y ( x ) d x = e x ∫ y ( x ) d x ( 1 ) u=u_1\int y(x)dx=e^x\int y(x)dx \;\;\;\;\;\;(1) u = u 1 ∫ y ( x ) d x = e x ∫ y ( x ) d x ( 1 )
∫ y ( x ) = u e x \int y(x) = \frac{u}{e^x} ∫ y ( x ) = e x u
then
u ′ = ( e x ∫ y ( x ) d x ) ′ = e x ∫ y ( x ) d x + e x ( ∫ y ( x ) d x ) ′ = u'=(e^x \int y(x)dx)'=e^x\int y(x)dx + e^x(\int y(x)dx)'= u ′ = ( e x ∫ y ( x ) d x ) ′ = e x ∫ y ( x ) d x + e x ( ∫ y ( x ) d x ) ′ =
= e x ∫ y ( x ) d x + e x y ( x ) = e x u e x + e x y ( x ) = u + e x y ( x ) =e^x \int y(x)dx+e^xy(x)=e^x\frac{u}{e^x}+e^xy(x)=u+e^xy(x) = e x ∫ y ( x ) d x + e x y ( x ) = e x e x u + e x y ( x ) = u + e x y ( x )
u ′ ′ = ( e x ∫ y ( x ) d x + e x y ( x ) ) ′ = u'' = (e^x\int y(x)dx +e^xy(x))'= u ′′ = ( e x ∫ y ( x ) d x + e x y ( x ) ) ′ =
= u + e x y ( x ) + e x y ( x ) + e x y ′ ( x ) = u + 2 e x y ( x ) + e x y ′ ( x ) =u+e^xy(x)+e^xy(x)+e^xy'(x)=u+2e^xy(x)+e^xy'(x) = u + e x y ( x ) + e x y ( x ) + e x y ′ ( x ) = u + 2 e x y ( x ) + e x y ′ ( x ) then
( x − 1 ) ( u + 2 e x y + e x y ′ ) − x ( u + e x y ) + u = 0 ⟺ (x-1)(u+2e^xy+e^xy')-x(u+e^xy)+u=0 \iff ( x − 1 ) ( u + 2 e x y + e x y ′ ) − x ( u + e x y ) + u = 0 ⟺
x u + 2 x e x y + x e x y ′ − u − 2 e x y − e x y ′ − x u − x e x y + u = 0 ⟺ xu+2xe^xy+xe^xy'-u-2e^xy-e^xy'-xu-xe^xy+u=0 \iff xu + 2 x e x y + x e x y ′ − u − 2 e x y − e x y ′ − xu − x e x y + u = 0 ⟺
e x ( x − 1 ) y ′ + e x ( x − 2 ) y = 0 ⟺ e^x(x-1)y'+e^x(x-2)y=0 \iff e x ( x − 1 ) y ′ + e x ( x − 2 ) y = 0 ⟺
( x − 1 ) y ′ = ( 2 − x ) y ⟺ (x-1)y'=(2-x)y \iff ( x − 1 ) y ′ = ( 2 − x ) y ⟺ ( x − 1 ) d y d x = ( 2 − x ) y ⟺ (x-1)\frac{dy}{dx}=(2-x)y \iff ( x − 1 ) d x d y = ( 2 − x ) y ⟺
1 y d y = 2 − x x − 1 d x \frac{1}{y}dy=\frac{2-x}{x-1}dx y 1 d y = x − 1 2 − x d x
∫ 1 y d y = ∫ ( 1 x − 1 − 1 ) d x \int \frac{1}{y}dy=\int (\frac{1}{x-1} -1)dx ∫ y 1 d y = ∫ ( x − 1 1 − 1 ) d x
l n ∣ y ∣ + C 1 = l n ∣ x − 1 ∣ − x + C 2 ⟹ ln|y|+C_1 = ln|x-1|-x+C_2 \implies l n ∣ y ∣ + C 1 = l n ∣ x − 1∣ − x + C 2 ⟹
y = C ( x − 1 ) e x ( 2 ) y = C(x-1)e^x \;\;\;\;\;\;\; (2) y = C ( x − 1 ) e x ( 2 ) From (1) and (2) we get
u = C e x ∫ ( x − 1 ) e x d x = ∣ u = x − 1 d v = e x d x d u = d x v = e x ∣ = u=Ce^x\int (x-1)e^xdx=\begin{vmatrix}
u=x-1 & dv=e^xdx \\
du=dx & v=e^x
\end{vmatrix} = u = C e x ∫ ( x − 1 ) e x d x = ∣ ∣ u = x − 1 d u = d x d v = e x d x v = e x ∣ ∣ =
= C ( e x ( x − 1 ) − ∫ e x d x ) = C ( e x ( x − 1 ) − e x + C 3 ) = C ( x e x − 2 e x + C 3 ) =C(e^x(x-1)-\int e^xdx)=C(e^x(x-1)-e^x+C_3)=C(xe^x-2e^x+C_3) = C ( e x ( x − 1 ) − ∫ e x d x ) = C ( e x ( x − 1 ) − e x + C 3 ) = C ( x e x − 2 e x + C 3 )
Then u 1 = e x u_1=e^x u 1 = e x is the first solution and u 2 = x e x u_2=xe^x u 2 = x e x is the second linearly independent solution.
Answer: a)u 2 = x e x u_2=xe^x u 2 = x e x
Comments