1.
x y 2 ( x y + 1 ) d x + x ( x y − 1 ) ( x y + 1 ) d y = 0 xy^2(xy+1)dx+x(xy-1)(xy+1)dy=0 x y 2 ( x y + 1 ) d x + x ( x y − 1 ) ( x y + 1 ) d y = 0
x = 0 x=0 x = 0 y = 0 y=0 y = 0 x y + 1 = 0 = > y = − 1 x xy+1=0=>y=-{1 \over x} x y + 1 = 0 => y = − x 1 Or
y 2 d x + ( x y − 1 ) d y = 0 y^2dx+(xy-1)dy=0 y 2 d x + ( x y − 1 ) d y = 0 P ( x , y ) = y 2 , Q ( x , y ) = x y − 1 P(x,y)=y^2, Q(x,y)=xy-1 P ( x , y ) = y 2 , Q ( x , y ) = x y − 1
ð P ð y = 2 y , ð Q ð x = y , ð P ð y ≠ ð Q ð x {\eth P \over \eth y}=2y, {\eth Q \over \eth x}=y, {\eth P \over \eth y}\not={\eth Q \over \eth x} ð y ð P = 2 y , ð x ð Q = y , ð y ð P = ð x ð Q ð P ð y − ð Q ð x = 2 y − y = y {\eth P \over \eth y}-{\eth Q \over \eth x}=2y-y=y ð y ð P − ð x ð Q = 2 y − y = y μ = μ ( y ) \mu=\mu(y) μ = μ ( y )
1 μ d μ d y = − 1 P ( ð P ð y − ð Q ð x ) {1 \over \mu}{d\mu \over dy}=-{1 \over P}({\eth P \over \eth y}-{\eth Q \over \eth x}) μ 1 d y d μ = − P 1 ( ð y ð P − ð x ð Q )
1 μ d μ d y = − 1 y 2 ( 2 y − y ) {1 \over \mu}{d\mu \over dy}=-{1 \over y^2}(2y-y) μ 1 d y d μ = − y 2 1 ( 2 y − y )
d μ μ = − d y y {d\mu \over \mu}=-{dy \over y} μ d μ = − y d y
∫ d μ μ = ∫ ( − d y y ) = > ln ∣ μ ∣ = ln ∣ 1 y ∣ + ln C \int {d\mu \over \mu}=\int (-{dy \over y})=>\ln|\mu|=\ln|{1 \over y}|+\ln C ∫ μ d μ = ∫ ( − y d y ) => ln ∣ μ ∣ = ln ∣ y 1 ∣ + ln C We choose
μ = 1 y \mu={1 \over y} μ = y 1 Multiplying the original differential equation by μ = 1 / y \mu=1/y μ = 1/ y produces the exact equation:
y d x + ( x − 1 y ) d y = 0 ydx+(x-{1 \over y})dy=0 y d x + ( x − y 1 ) d y = 0 Indeed, now we have
ð P ð y = 1 , ð Q ð x = 1 , ð P ð y = ð Q ð x {\eth P \over \eth y}=1, {\eth Q \over \eth x}=1, {\eth P \over \eth y}={\eth Q \over \eth x} ð y ð P = 1 , ð x ð Q = 1 , ð y ð P = ð x ð Q Solve the resulting equation. The function u ( x , y ) u(x,y) u ( x , y ) can be found from the system of equations:
{ ð u ð x = y ð u ð y = x − 1 y \begin{cases}
{\eth u \over \eth x}=y \\
{\eth u \over \eth y}=x-{1 \over y}
\end{cases} { ð x ð u = y ð y ð u = x − y 1 It follows from the first equation that
u = ∫ y d x = x y + φ ( y ) u=\int y dx=xy+\varphi (y) u = ∫ y d x = x y + φ ( y ) Substitute this in the second equation to determine φ : \varphi: φ :
ð u ð y = x + d φ d y = x − 1 y {\eth u \over \eth y}=x+ {d \varphi \over d y}=x-{1 \over y} ð y ð u = x + d y d φ = x − y 1
∫ d φ = ∫ ( − 1 y ) d y = > φ ( y ) = ln ( 1 ∣ y ∣ ) \int d\varphi=\int (-{1 \over y})dy=>\varphi (y)=\ln({1 \over |y|}) ∫ d φ = ∫ ( − y 1 ) d y => φ ( y ) = ln ( ∣ y ∣ 1 ) Thus, the original differential equation has the following solutions:
x = 0 x=0 x = 0 y = 0 y=0 y = 0 y = − 1 x y=-{1 \over x} y = − x 1 x y + ln ( 1 ∣ y ∣ ) = C 1 xy+\ln({1 \over |y|})=C_1 x y + ln ( ∣ y ∣ 1 ) = C 1 where C 1 C_1 C 1 is a constant.
2.
( x 2 + y 2 − y ) d x + x d y = 0 (x^2+y^2-y)dx+xdy=0 ( x 2 + y 2 − y ) d x + x d y = 0 We can make sure that this equation is not exact:
P ( x , y ) = x 2 + y 2 − y , Q ( x , y ) = x P(x,y)=x^2+y^2-y, Q(x,y)=x P ( x , y ) = x 2 + y 2 − y , Q ( x , y ) = x
ð P ð y = 2 y − 1 , ð Q ð x = 1 , ð P ð y ≠ ð Q ð x {\eth P \over \eth y}=2y-1, {\eth Q \over \eth x}=1, {\eth P \over \eth y}\not={\eth Q \over \eth x} ð y ð P = 2 y − 1 , ð x ð Q = 1 , ð y ð P = ð x ð Q The difference of the partial derivatives is
ð P ð y − ð Q ð x = 2 y − 1 − 1 = 2 y − 2 {\eth P \over \eth y}-{\eth Q \over \eth x}=2y-1-1=2y-2 ð y ð P − ð x ð Q = 2 y − 1 − 1 = 2 y − 2 Using the integrating factor μ = x 2 + y 2 \mu=x^2+y^2 μ = x 2 + y 2 we find that
ð z ð y = 2 y , ð z ð x = 2 x {\eth z \over \eth y}=2y, {\eth z \over \eth x}=2x ð y ð z = 2 y , ð x ð z = 2 x Calculate the following expression:
Q ð z ð x − P ð z ð y = x ( 2 x ) − ( x 2 + y 2 − y ) ( 2 y ) = Q{\eth z \over \eth x}-P {\eth z \over \eth y}=x(2x)-(x^2+y^2-y)(2y)= Q ð x ð z − P ð y ð z = x ( 2 x ) − ( x 2 + y 2 − y ) ( 2 y ) = = 2 x 2 + 2 y 2 − 2 y ( x 2 + y 2 ) = ( x 2 + y 2 ) ( 2 − 2 y ) =2x^2+2y^2-2y(x^2+y^2)=(x^2+y^2)(2-2y) = 2 x 2 + 2 y 2 − 2 y ( x 2 + y 2 ) = ( x 2 + y 2 ) ( 2 − 2 y ) As a result, we obtain the differential equation for the function μ ( z ) : \mu(z): μ ( z ) :
1 μ d μ d z = 1 ( Q ð z ð x − P ð z ð y ) ( ð P ð y − ð Q ð x ) = {1 \over \mu}{d\mu \over dz}={1 \over (Q{\eth z \over \eth x}-P {\eth z \over \eth y})}({\eth P \over \eth y}-{\eth Q \over \eth x})= μ 1 d z d μ = ( Q ð x ð z − P ð y ð z ) 1 ( ð y ð P − ð x ð Q ) =
= 1 ( x 2 + y 2 ) ( 2 − 2 y ) ( 2 y − 2 ) = − 1 x 2 + y 2 = − 1 z ={1 \over (x^2+y^2)(2-2y)}(2y-2)=-{1 \over {x^2+y^2}}=-{1 \over z} = ( x 2 + y 2 ) ( 2 − 2 y ) 1 ( 2 y − 2 ) = − x 2 + y 2 1 = − z 1
By integrating we get the function μ ( z ) : \mu(z): μ ( z ) :
∫ d μ μ = ∫ ( − d z z ) = > ln ∣ μ ∣ = − ln ∣ z ∣ + ln C \int {d\mu \over \mu}=\int (-{dz \over z})=>\ln|\mu|=-\ln|z|+\ln C ∫ μ d μ = ∫ ( − z d z ) => ln ∣ μ ∣ = − ln ∣ z ∣ + ln C We choose
μ = 1 z \mu={1 \over z} μ = z 1 We can choose the integrating factor
μ = − 1 z = − 1 x 2 + y 2 \mu=-{1 \over z}=-{1 \over {x^2+y^2}} μ = − z 1 = − x 2 + y 2 1
− 1 x 2 + y 2 ( x 2 + y 2 − y ) d x − 1 x 2 + y 2 x d y = 0 -{1 \over {x^2+y^2}}(x^2+y^2-y)dx-{1 \over {x^2+y^2}}xdy=0 − x 2 + y 2 1 ( x 2 + y 2 − y ) d x − x 2 + y 2 1 x d y = 0 Or
( 1 − y x 2 + y 2 ) d x + x x 2 + y 2 d y = 0 (1-{y\over {x^2+y^2}})dx+{x \over {x^2+y^2}}dy=0 ( 1 − x 2 + y 2 y ) d x + x 2 + y 2 x d y = 0 The general solution u ( x , y ) = C u(x,y)=C u ( x , y ) = C is defined by the following system of equations:
{ ð u ð x = 1 − y x 2 + y 2 ð u ð y = x x 2 + y 2 \begin{cases}
{\eth u \over \eth x}=1-{y\over {x^2+y^2}} \\
{\eth u \over \eth y}={x \over {x^2+y^2}}
\end{cases} { ð x ð u = 1 − x 2 + y 2 y ð y ð u = x 2 + y 2 x Integrating the first equation with respect to x produces:
u ( x , y ) = ∫ ( 1 − y x 2 + y 2 ) d x = x − y ∫ 1 x 2 + y 2 d x = u(x,y)=\int{(1-{y\over {x^2+y^2}})}dx=x-y\int{{1\over {x^2+y^2}}}dx= u ( x , y ) = ∫ ( 1 − x 2 + y 2 y ) d x = x − y ∫ x 2 + y 2 1 d x =
= x − arctan ( x y ) + φ ( y ) =x-\arctan({x \over y})+\varphi(y) = x − arctan ( y x ) + φ ( y ) Substituting this in the second equation, we have:
ð u ð y = x x 2 + y 2 + d φ d y = x x 2 + y 2 {\eth u \over \eth y}={x\over {x^2+y^2}}+ {d \varphi \over d y}={x\over {x^2+y^2}} ð y ð u = x 2 + y 2 x + d y d φ = x 2 + y 2 x
d φ d y = 0 {d \varphi \over d y}=0 d y d φ = 0 Thus, the general solution of differential equation in implicit form is defined by the formula:
x − arctan ( x y ) = C x-\arctan({x \over y})=C x − arctan ( y x ) = C where C C C is a constant.
3.
d y d x + y = 3 y 3 e x {dy \over dx}+y=3y^3e^x d x d y + y = 3 y 3 e x y = 0 y=0 y = 0 Or
y − 3 d y d x + y − 2 = 3 e x y^{-3}{dy \over dx}+y^{-2}=3e^x y − 3 d x d y + y − 2 = 3 e x The associated homogeneous differential equation is
y − 3 d y d x + y − 2 = 0 y^{-3}{dy \over dx}+y^{-2}=0 y − 3 d x d y + y − 2 = 0
d y d x + y = 0 {dy \over dx}+y=0 d x d y + y = 0
d y y = − d x {dy \over y}=-dx y d y = − d x y = C 1 e − x y=C_1e^{-x} y = C 1 e − x
d y d x = d C 1 d x e − x − C 1 e − x {dy \over dx}={dC_1 \over dx}e^{-x}-C_1e^{-x} d x d y = d x d C 1 e − x − C 1 e − x Substitute
d C 1 d x e − x − C 1 e − x + C 1 e − x = 3 C 1 3 e − 3 x e x {dC_1 \over dx}e^{-x}-C_1e^{-x}+C_1e^{-x}=3C_1^3e^{-3x}e^x d x d C 1 e − x − C 1 e − x + C 1 e − x = 3 C 1 3 e − 3 x e x
d C 1 d x = 3 C 1 3 e − x {dC_1 \over dx}=3C_1^3e^{-x} d x d C 1 = 3 C 1 3 e − x
d C 1 C 1 3 = 3 e − x d x {dC_1 \over C_1^3}=3e^{-x}dx C 1 3 d C 1 = 3 e − x d x
∫ d C 1 C 1 3 = ∫ 3 e − x d x \int {dC_1 \over C_1^3}=\int3e^{-x}dx ∫ C 1 3 d C 1 = ∫ 3 e − x d x
− 1 2 C 1 2 = − 3 e − x d x − C 2 2 -{1 \over2 C_1^2}=-3e^{-x}dx-{C_2 \over2} − 2 C 1 2 1 = − 3 e − x d x − 2 C 2
C 1 = 1 6 e − x d x + C 2 C_1={1\over \sqrt{6e^{-x}dx+C_2}} C 1 = 6 e − x d x + C 2 1 Thus, the original differential equation has the following solutions:
y = 0 y=0 y = 0 y = 1 e x 6 e − x d x + C 2 y={1\over e^x \sqrt{6e^{-x}dx+C_2}} y = e x 6 e − x d x + C 2 1 where C 1 C_1 C 1 is a constant.
Comments