1.
"x=0""y=0""xy+1=0=>y=-{1 \\over x}"
Or
"{\\eth P \\over \\eth y}=2y, {\\eth Q \\over \\eth x}=y, {\\eth P \\over \\eth y}\\not={\\eth Q \\over \\eth x}""{\\eth P \\over \\eth y}-{\\eth Q \\over \\eth x}=2y-y=y"
"{1 \\over \\mu}{d\\mu \\over dy}=-{1 \\over P}({\\eth P \\over \\eth y}-{\\eth Q \\over \\eth x})"
"{1 \\over \\mu}{d\\mu \\over dy}=-{1 \\over y^2}(2y-y)"
"{d\\mu \\over \\mu}=-{dy \\over y}"
"\\int {d\\mu \\over \\mu}=\\int (-{dy \\over y})=>\\ln|\\mu|=\\ln|{1 \\over y}|+\\ln C"
We choose
Multiplying the original differential equation by "\\mu=1\/y" produces the exact equation:
Indeed, now we have
Solve the resulting equation. The function "u(x,y)" can be found from the system of equations:
It follows from the first equation that
Substitute this in the second equation to determine "\\varphi:"
"\\int d\\varphi=\\int (-{1 \\over y})dy=>\\varphi (y)=\\ln({1 \\over |y|})"
Thus, the original differential equation has the following solutions:
where "C_1" is a constant.
2.
We can make sure that this equation is not exact:
"{\\eth P \\over \\eth y}=2y-1, {\\eth Q \\over \\eth x}=1, {\\eth P \\over \\eth y}\\not={\\eth Q \\over \\eth x}"
The difference of the partial derivatives is
Using the integrating factor "\\mu=x^2+y^2" we find that
Calculate the following expression:
"Q{\\eth z \\over \\eth x}-P {\\eth z \\over \\eth y}=x(2x)-(x^2+y^2-y)(2y)=""=2x^2+2y^2-2y(x^2+y^2)=(x^2+y^2)(2-2y)"As a result, we obtain the differential equation for the function "\\mu(z):"
"{1 \\over \\mu}{d\\mu \\over dz}={1 \\over (Q{\\eth z \\over \\eth x}-P {\\eth z \\over \\eth y})}({\\eth P \\over \\eth y}-{\\eth Q \\over \\eth x})=""={1 \\over (x^2+y^2)(2-2y)}(2y-2)=-{1 \\over {x^2+y^2}}=-{1 \\over z}"
By integrating we get the function "\\mu(z):"
"\\int {d\\mu \\over \\mu}=\\int (-{dz \\over z})=>\\ln|\\mu|=-\\ln|z|+\\ln C"We choose
"\\mu={1 \\over z}"We can choose the integrating factor
"\\mu=-{1 \\over z}=-{1 \\over {x^2+y^2}}""-{1 \\over {x^2+y^2}}(x^2+y^2-y)dx-{1 \\over {x^2+y^2}}xdy=0"
Or
"(1-{y\\over {x^2+y^2}})dx+{x \\over {x^2+y^2}}dy=0"The general solution "u(x,y)=C" is defined by the following system of equations:
"\\begin{cases}\n {\\eth u \\over \\eth x}=1-{y\\over {x^2+y^2}} \\\\\n {\\eth u \\over \\eth y}={x \\over {x^2+y^2}}\n\\end{cases}"Integrating the first equation with respect to x produces:
"u(x,y)=\\int{(1-{y\\over {x^2+y^2}})}dx=x-y\\int{{1\\over {x^2+y^2}}}dx=""=x-\\arctan({x \\over y})+\\varphi(y)"
Substituting this in the second equation, we have:
"{d \\varphi \\over d y}=0"
Thus, the general solution of differential equation in implicit form is defined by the formula:
"x-\\arctan({x \\over y})=C"where "C" is a constant.
3.
Or
The associated homogeneous differential equation is
"{dy \\over dx}+y=0"
"{dy \\over y}=-dx""y=C_1e^{-x}"
"{dy \\over dx}={dC_1 \\over dx}e^{-x}-C_1e^{-x}"
Substitute
"{dC_1 \\over dx}=3C_1^3e^{-x}"
"{dC_1 \\over C_1^3}=3e^{-x}dx"
"\\int {dC_1 \\over C_1^3}=\\int3e^{-x}dx"
"-{1 \\over2 C_1^2}=-3e^{-x}dx-{C_2 \\over2}"
"C_1={1\\over \\sqrt{6e^{-x}dx+C_2}}"
Thus, the original differential equation has the following solutions:
where "C_1" is a constant.
Comments
Leave a comment