Question #92900
Solve.
d²y/dx² - 4x dy/dx + (4x²-1)y = -3exp(x²)sin(2x)
1
Expert's answer
2019-08-25T14:47:19-0400

y4xy+(4x21)y=3ex2sin(2x)y^{\prime\prime}-4xy^{\prime}+(4x^2-1)y=-3e^{x²}sin(2x)\\ consider:y4xy+(4x21)y=0y(x)=ex2z(x)(2ex2z+4x2ex2z+4xex2z+ex2z)4x(2xex2z+ex2z)+(4x21)ex2z=0z+z=0z=c1cos(x)+c2sin(x)y(x)=c1ex2cos(x)+c2ex2sin(x)y^{\prime\prime}-4xy^{\prime}+(4x^2-1)y=0\\ y(x)=e^{x^2}\cdot z(x)\\ (2e^{x^2}z+4x^2e^{x^2}z+4xe^{x^2}z^{\prime}+e^{x^2}z^{\prime\prime})-4x(2xe^{x^2}z+e^{x^2}z^{\prime})+(4x^2-1)e^{x^2}z=0\\ z^{\prime\prime}+z=0\\ z=c_1\cos(x)+c_2\sin(x)\\ y(x)=c_1e^{x^2}\cos(x)+c_2e^{x^2}\sin(x)

check the particular solution:y1=ex2sin(2x)y=2xex2sin(2x)+2ex2cos(2x)y=2ex2sin(2x)+4x2ex2sin(2x)+8xex2cos(2x)y4xy+(4x21)y=2ex2sin(2x)+4x2ex2sin(2x)+8xex2cos(2x)4x(2xex2sin(2x)+2ex2cos(2x))+(4x21)(ex2sin(2x))=3ex2sin(2x)y_1=e^{x^2}\sin(2x)\\ y^\prime = 2\,x{{\rm e}^{{x}^{2}}}\sin \left( 2\,x \right) +2\,{{\rm e}^{{x}^{2}} }\cos \left( 2\,x \right)\\ y^{\prime\prime} = -2\,{{\rm e}^{{x}^{2}}}\sin \left( 2\,x \right) +4\,{x}^{2}{{\rm e}^{{ x}^{2}}}\sin \left( 2\,x \right) +8\,x{{\rm e}^{{x}^{2}}}\cos \left( 2 \,x \right) \\ y^{\prime\prime}-4xy^{\prime}+(4x^2-1)y =\\ -2\,{{\rm e}^{{x}^{2}}}\sin \left( 2\,x \right) +4\,{x}^{2}{{\rm e}^{{ x}^{2}}}\sin \left( 2\,x \right) +8\,x{{\rm e}^{{x}^{2}}}\cos \left( 2 \,x \right) -4x(2\,x{{\rm e}^{{x}^{2}}}\sin \left( 2\,x \right) +2\,{{\rm e}^{{x}^{2}} }\cos \left( 2\,x \right) )+(4x^2-1)(e^{x^2}\sin(2x))=-3e^{x^2}\sin(2x)

then solution is:y(x)=c1ex2cos(x)+c2ex2sin(x)+ex2sin(2x)y(x)=c_1e^{x^2}\cos(x)+c_2e^{x^2}\sin(x)+e^{x^2}\sin(2x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS